分析 (1)根據(jù)等邊三角形的性質(zhì)可得AC=BC,CD=CE,∠ACB=∠DCE=60°,然后求出∠ACD=∠BCE,再利用“邊角邊”證明△ACD和△BCE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等證明即可;
(2)根據(jù)全等三角形對(duì)應(yīng)角相等可得∠CAD=∠CBE,然后求出∠OAB+∠OBA=120°,再根據(jù)三角形的內(nèi)角和等于180°列式計(jì)算即可得解.
解答 證明:(1)∵△ABC和△ECD都是等邊三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠ACE=∠DCE+∠ACE,
即∠ACD=∠BCE,
在△ACD和△BCE中,$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE(SAS),
∴AD=BE;
(2)∵△ACD≌△BCE,
∴∠CAD=∠CBE,
∴∠OAB+∠OBA=∠BAC+∠CAD+∠ABO,
=∠BAC+∠CBE+∠ABO,
=∠BAC+∠ABC,
=60°+60°,
=120°,
在△ABO中,∠AOB=180°-(∠OAB+∠OBA)=180°-120°=60°,
即∠AOB=60°.
點(diǎn)評(píng) 本題考查了全等三角形的判定與性質(zhì),等邊三角形的性質(zhì),熟練掌握全等三角形的判定方法是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com