分析 (1)根據(jù)AB=BC可證∠CAB=∠ACB,則在△ABC與△AEP中,有兩個(gè)角對(duì)應(yīng)相等,根據(jù)三角形內(nèi)角和定理,即可證得;
(2)首先證得?APCD是矩形,則可證得:∠EAM=∠EPN,又由旋轉(zhuǎn)的性質(zhì),可得∠MEA=∠NEP,繼而可以證明△EAM≌△EPN,從而得到EM=EN.
解答 (1)證明:在△ABC和△AEP中,
∵∠ABC=∠AEP,∠BAC=∠EAP,
∴∠ACB=∠APE,
在△ABC中,AB=BC,
∴∠ACB=∠BAC,
∴∠EPA=∠EAP.
(2)解:EM=EN.
理由:∵EA=EP,
∴∠EPA=$\frac{180°-∠AEP}{2}$=$\frac{180°-∠ABC}{2}$=90°-$\frac{1}{2}$α,
∴∠EAM=180°-∠EPA=180°-(90°-$\frac{1}{2}$α)=90°+$\frac{1}{2}$α,
∵四邊形APCD是平行四邊形,
∴AC=2EA,PD=2EP,
∵由(1)知∠EPA=∠EAP,
∴EA=EP,
則AC=PD,
∴?APCD是矩形.
∴∠CPB=90°,F(xiàn)是BC的中點(diǎn),
∴FP=FB,
∴∠FPB=∠ABC=α,
∴∠EPN=∠EPA+∠APN=∠EPA+∠FPB=90°-$\frac{1}{2}$α+α=90°+$\frac{1}{2}$α,
∴∠EAM=∠EPN,
∵∠AEP繞點(diǎn)E順時(shí)針旋轉(zhuǎn)適當(dāng)?shù)慕嵌龋玫健螹EN,
∴∠AEP=∠MEN,
∴∠AEP-∠AEN=∠MEN-∠AEN,即∠MEA=∠NEP,
在△EAM和△EPN中,
$\left\{\begin{array}{l}{∠EAM=∠EPN}\\{EA=EP}\\{∠MEA=∠NEP}\end{array}\right.$,
∴△EAM≌△EPN(ASA),
∴EM=EN.
點(diǎn)評(píng) 本題主要考查了等腰三角形的性質(zhì),以及矩形的判定方法,在旋轉(zhuǎn)中找到題目中存在的相等的線段以及相等的角是解決本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{a}$=$\frac{a^2}{b^2}$ | B. | $\frac{a}$=$\frac{ab}{ab}$ | C. | $\frac{a}$=$\frac{a+2c}{b+2c}$(c≠0) | D. | $\frac{a}$=$\frac{ac}{bc}$(c≠0) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -1 | B. | 3 | C. | -1或3 | D. | -1或-$\frac{5}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -4 | B. | -6 | C. | 4 | D. | 6 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com