分析 (1)由題意可知,①當(dāng)F為BC的中點(diǎn)時(shí),由AB=BC=5,可以推出CF和OF的長(zhǎng)度,即可推出BF的長(zhǎng)度,②當(dāng)B與F重合時(shí),③當(dāng)OC=FC時(shí),根據(jù)直角三角形的相關(guān)性質(zhì),即可推出OF的長(zhǎng)度,即可推出BF的長(zhǎng)度;
(2)連接OB,由已知條件推出△OEB≌△OFC,即可推出OE=OF.
解答 解:(1)△OFC是能成為等腰直角三角形,
①當(dāng)F為BC的中點(diǎn)時(shí),
∵O點(diǎn)為AC的中點(diǎn),
∴OF∥AB,
∴CF=OF=$\frac{1}{2}$AB=$\frac{5}{2}$,
∵AB=BC=5,
∴BF=$\frac{5}{2}$,
②當(dāng)B與F重合時(shí),
∵OF=OC=$\frac{5}{2}$$\sqrt{2}$,
∴BF=0;![]()
(2)如圖①,連接OB,
∵由(1)的結(jié)論可知,BO=OC=$\frac{5}{2}$$\sqrt{2}$,
在△OEB與△OFC中,$\left\{\begin{array}{l}{∠OBE=∠C}\\{OB=OC}\\{∠EOB=∠FOC}\end{array}\right.$,
∴△OEB≌△OFC(ASA),
∴OE=OF.
點(diǎn)評(píng) 本題主要考查全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)、旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵在于作好輔助線(xiàn),構(gòu)建全等的三角形.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 5個(gè) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com