分析 由三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分線的性質(zhì),得∠ECD=$\frac{1}{2}$(∠A+∠ABC),∠EBC=$\frac{1}{2}$∠ABC,利用等量代換,即可求得∠A與∠E的關(guān)系,即可得到結(jié)論.
解答 證明:∵∠ACD=∠A+∠ABC,
∴∠ECD=$\frac{1}{2}$(∠A+∠ABC).
又∵∠ECD=∠E+∠EBC,
∴∠E+∠EBC=$\frac{1}{2}$(∠A+∠ABC).
∵BE平分∠ABC,
∴∠EBC=$\frac{1}{2}$∠ABC,
∴$\frac{1}{2}$∠ABC+∠E=$\frac{1}{2}$(∠A+∠ABC),
∴∠E=$\frac{1}{2}$∠A=$\frac{1}{2}×$36°=18°.
點評 本題考查了三角形的內(nèi)角和,三角形外角的性質(zhì),三角形的角平分線性質(zhì),解答的關(guān)鍵是理清各角之間的關(guān)系.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{{a}^{5}b}{(a-b)^{3}}$ | B. | $\frac{{a}^{6}^{3}}{{a}^{3}-^{3}}$ | C. | $\frac{{a}^{6}^{3}}{(a-b)^{3}}$ | D. | $\frac{{a}^{5}^{3}}{{a}^{3}-^{3}}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $2\sqrt{3}+4\sqrt{2}=6\sqrt{5}$ | B. | $\sqrt{{{(-3)}^2}}=-3$ | C. | $\sqrt{27}÷\sqrt{3}=3$ | D. | $3\sqrt{3}×2\sqrt{2}=3\sqrt{6}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com