分析 (1)連接AO,AC(如圖).欲證AP是⊙O的切線,只需證明OA⊥AP即可;
(2)由CD是⊙O的切線,得到CD⊥OC,根據(jù)tanB=$\frac{1}{2}$,得到$\frac{AC}{AB}$=$\frac{1}{2}$根據(jù)相似三角形的性質(zhì)得到$\frac{AP}{PB}=\frac{AC}{AB}$=$\frac{1}{2}$,得到PA=2PC,根據(jù)相似三角形的性質(zhì)解方程即可得到結(jié)論.
解答 (1)證明:連接AO,AC(如圖).
∵BC是⊙O的直徑,
∴∠BAC=∠CAD=90°.
∵E是CD的中點,
∴CE=DE=AE.
∴∠ECA=∠EAC.
∵OA=OC,
∴∠OAC=∠OCA.
∵CD是⊙O的切線,
∴CD⊥OC.
∴∠ECA+∠OCA=90°.
∴∠EAC+∠OAC=90°.![]()
∴OA⊥AP.
∵A是⊙O上一點,
∴AP是⊙O的切線;
(2)解:∵tanB=$\frac{1}{2}$,
∴$\frac{AC}{AB}$=$\frac{1}{2}$,
∵AP是⊙O的切線;
∴∠B=∠CAP,∵∠P=∠P,
∴△APC∽△BPA,
∴$\frac{AP}{PB}=\frac{AC}{AB}$=$\frac{1}{2}$,
∴PA=2PC,
∵△APC∽△BPA,
∴$\frac{PA}{PB}=\frac{PC}{PA}$,
∴PA2=PC•PB,
即(2PC)2=(PC+6)•PC,
∴PC=2.
點評 本題考查了切線的判定和性質(zhì),相似三角形的判定和性質(zhì),圓周角定理正確的作出輔助線是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2a2+a3=2a5 | B. | 2a2•a3=2a6 | C. | (-2a2)3=-8a5 | D. | (-2a3)2=4a6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{3}$ | B. | 3$\sqrt{3}$ | C. | 6 | D. | 6$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x<0 | B. | x>0 | C. | x<2 | D. | x>2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com