分析 (1)根據(jù)題意得出∠OBM=90°,再利用切線的判定方法得出答案;
(2)首先利用全等三角形的判定方法得出△EOD≌△CAD(ASA),進而得出∠E的度數(shù);
(3)首先得出△ADC∽△OBF,進而求出△ADG∽△ABF,再利用相似三角形的性質(zhì)得出$\frac{AD}{OB}$=$\frac{2DG}{BF}$=$\frac{DC}{BF}$,求出即可.
解答
(1)證明:由題意知∠ACB=90°,
∴∠OBM=∠ABC+∠CBF=∠ABC+∠BAC=180°-∠ACB=90°,
∴OB⊥BM,
∴BM為⊙O的切線;
(2)解:假設(shè)存在點E,如圖1,
∵CD⊥AB,
∴DE=DC,
∵OF∥AC,
∴∠ACE=∠CEF,
在△EOD和△CAD中
$\left\{\begin{array}{l}{∠E=∠ACE}\\{ED=DC}\\{∠EDO=∠ADC}\end{array}\right.$,
∴△EOD≌△CAD(ASA),
∴OD=DA,
在Rt△OED中,
sin∠OED=$\frac{OD}{OE}$=$\frac{OD}{OA}$=$\frac{OD}{2OD}$=$\frac{1}{2}$,
∴∠E=30°;
(3)解:如圖2,
點E存在,k的值不會變化,k=$\frac{1}{2}$,
理由:∵點C在右半圓上移動(與點A、B不重合),且AC∥OF,
∴∠CAD=∠FOB,
∵∠ABF=90°,DC⊥AB,
∴∠ADC=∠ABF,
∴∠ADC=∠ABF,![]()
∴△ADC∽△OBF,
∴$\frac{AD}{OB}$=$\frac{DC}{BF}$,
又∵∠DAG=∠BAF,∠ADG=∠ABF=90°,
∴△ADG∽△ABF,
∴$\frac{AD}{AB}$=$\frac{DG}{BF}$,
又∵AB=2OB,
∴$\frac{AD}{2OB}$=$\frac{DG}{BF}$,即$\frac{AD}{OB}$=$\frac{2DG}{BF}$=$\frac{DC}{BF}$,
∴DC=2DG,即DG=GC,
∴k=$\frac{GC}{DC}$=$\frac{1}{2}$.
點評 此題主要考查了全等三角形的判定與性質(zhì)和相似三角形的判定與性質(zhì)以及切線的判定與性質(zhì)等知識,得出△ADG∽△ABF是解題關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 30° | B. | 45° | C. | 60° | D. | 75° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{2}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5個 | B. | 4個 | C. | 3個 | D. | 1個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3個 | B. | 4個 | C. | 5個 | D. | 6個 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com