分析 先利用兩點(diǎn)間的距離公式得到P(x,y)到點(diǎn)F(0,1)的距離為$\sqrt{{x}^{2}+(y-1)^{2}}$,點(diǎn)P到直線y=-1的距離為y+1,x2+(y-1)2=(y+1)2,然后用x表示y即可.
解答 解:P(x,y)到點(diǎn)F(0,1)的距離為$\sqrt{{x}^{2}+(y-1)^{2}}$,點(diǎn)P到直線y=-1的距離為y+1,
則$\sqrt{{x}^{2}+(y-1)^{2}}$=y+1,
即x2+(y-1)2=(y+1)2,
整理得y=$\frac{1}{4}$x2,
即動(dòng)點(diǎn)P在拋物線y=$\frac{1}{4}$x2上.
故答案為y=$\frac{1}{4}$x2.
點(diǎn)評(píng) 本題考查了待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關(guān)系式時(shí),要根據(jù)題目給定的條件,選擇恰當(dāng)?shù)姆椒ㄔO(shè)出關(guān)系式,從而代入數(shù)值求解.也考查了兩點(diǎn)間的距離公式.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 加法交換律 | B. | 加法交換律和加法結(jié)合律 | ||
| C. | 加法結(jié)合律 | D. | 無法判斷 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com