分析 (1)根據(jù)坐標(biāo)軸上的點(diǎn)的坐標(biāo)特征,結(jié)合一次函數(shù)的解析式求出A、B兩點(diǎn)的坐標(biāo),利用勾股定理即可解答;
(2)因?yàn)锽(0,3),所以O(shè)B=3,所以AB=5,所以AO=AB-BO=5-3=2,所以A(0,-2);
(3)過點(diǎn)C作CF⊥OA與點(diǎn)F,證明△AOB≌△CFA,得到點(diǎn)C的坐標(biāo),求出直線AC解析式,根據(jù)AC∥BD,所以直線BD的解析式的k值與直線AC的解析式k值相同,設(shè)出解析式,即可解答.
解答 解:(1)∵一次函數(shù)y=$\frac{3}{4}$x+3的圖象與x軸、y軸分別交于A、B兩點(diǎn),
∴A(-4,0),B(0,3),
∴AO=4,BO=3,
在Rt△AOB中,AB=$\sqrt{A{O}^{2}+B{O}^{2}}=\sqrt{{4}^{2}+{3}^{2}}=5$,
∵等腰直角三角形ABC,∠BAC=90°,
∴BC=$\sqrt{A{B}^{2}+A{C}^{2}}=\sqrt{{5}^{2}+{5}^{2}}=5\sqrt{2}$;
故答案為:5;$5\sqrt{2}$.
(2)①如圖,![]()
∵B(0,3),
∴OB=3,
∵AB=5,
∴AO=AB-BO=5-3=2,
∴A(0,-2)或(0,8)
故答案為:(0,-2)或(0,8)
(3)如圖,![]()
過點(diǎn)C作CF⊥OA與點(diǎn)F,
∵△ABC為等腰直角三角形,
∴∠BAC=90°,AB=AC,
∴∠BAO+∠CAF=90°,
∵∠OBA+∠BAO=90°,
∴∠CAF=∠OBA,
在△AOB和△CFA中,
$\left\{\begin{array}{l}{∠CFA=∠AOB=9{0}^{°}}\\{∠CAF=∠OBA}\\{AC=AB}\end{array}\right.$,
∴△AOB≌△CFA(AAS);
∴OA=CF=4,OB=AF=3,
∴OF=7,CF=4,
∴C(-7,4)
∵A(-4,0)
設(shè)直線AC解析式為y=kx+b,
將A與C坐標(biāo)代入得:$\left\{\begin{array}{l}{-4k+b=0}\\{-7k+b=4}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-\frac{4}{3}}\\{b=-\frac{16}{3}}\end{array}\right.$,
則直線AC解析式為y=$-\frac{4}{3}x-\frac{16}{3}$,
∵將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)角為90°時(shí),得到△BDE,
∴∠ABD=90°,
∵∠CAB=90°,
∴∠ABD=∠CAB=90°,
∴AC∥BD,
∴設(shè)直線BD的解析式為y=$-\frac{4}{3}$x+b1,
把B(0,3)代入解析式的:b1=3,
∴直線BD的解析式為y=$-\frac{4}{3}$x+3.
點(diǎn)評(píng) 此題屬于一次函數(shù)綜合題,涉及的知識(shí)有:全等三角形的判定與性質(zhì),坐標(biāo)與圖形性質(zhì),等腰直角三角形的性質(zhì),以及待定系數(shù)法求一次函數(shù)解析式,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3\sqrt{3}}{4}$ | B. | $\frac{2\sqrt{3}}{4}$ | C. | $\frac{\sqrt{3}}{4}$ | D. | $\frac{\sqrt{3}}{8}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 100° | B. | 110° | C. | 120° | D. | 130° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com