分析 (1)根據(jù)一次函數(shù)的解析式求得A、C的坐標(biāo),進(jìn)而求得P的坐標(biāo),代入反比例函數(shù)y=$\frac{m}{x}$(x>0)中,利用待定系數(shù)法即可求解;
(2)假設(shè)存在這樣的D點(diǎn),使四邊形BCPD為菱形,根據(jù)菱形的特點(diǎn)得出D點(diǎn)的坐標(biāo).
解答
解:(1)直線y=$\frac{1}{2}$x+2中,令x=0,則y=2;令y=0,則x=-4;
∴A(-4,0),C(0,2);
∵C為AP的中點(diǎn),
∴P(4,4),
∵點(diǎn)P是反比例函數(shù)y=$\frac{m}{x}$(x>0)的圖象上的點(diǎn),
∴m=4×4=16;
∴反比例函數(shù)的表達(dá)式為y=$\frac{16}{x}$;
(2)假設(shè)存在這樣的D點(diǎn),使四邊形BCPD為菱形,如圖所示,連接DC與PB交于E,
∵四邊形BCPD為菱形,
∴PB⊥CD,
∵C為AP的中點(diǎn),
∴CE=$\frac{1}{2}$AB=4
∴CE=DE=4,
∴CD=8,
將x=8代入反比例函數(shù)y=$\frac{16}{x}$得y=2,
∴D點(diǎn)的坐標(biāo)為(8,2)
∴則反比例函數(shù)圖象上存在點(diǎn)D,使四邊形BCPD為菱形,此時(shí)D坐標(biāo)為(8,2).
點(diǎn)評 此題屬于反比例函數(shù)綜合題,涉及的知識(shí)有:待定系數(shù)法確定函數(shù)解析式,一次函數(shù)與反比例函數(shù)的交點(diǎn)問題,坐標(biāo)與圖形性質(zhì),菱形的性質(zhì),熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | y2<y3<y1 | B. | y3<y1<y2 | C. | y1<y3<y2 | D. | y2<y1<y3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 110° | B. | 102° | C. | 105° | D. | 125° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 10 | B. | 13 | C. | 20 | D. | 26 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 45° | B. | 40° | C. | 35° | D. | 30° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com