| A. | 2$\sqrt{3}$ | B. | 8 | C. | 2$\sqrt{10}$ | D. | 2$\sqrt{13}$ |
分析 連接OC與OE.根據一條弧所對的圓周角等于它所對的圓心角的一半,可知∠EOC的度數;再根據切線的性質定理,圓的切線垂直于經過切點的半徑,可知OC⊥AB;又EF∥AB,可知OC⊥EF,最后由勾股定理可將EF的長求出
解答
解:連接OE和OC,且OC與EF的交點為M.
∵∠EDC=30°,
∴∠COE=60°.
∵AB與⊙O相切,
∴OC⊥AB,
又∵EF∥AB,
∴OC⊥EF,即△EOM為直角三角形.
在Rt△EOM中,EM=sin60°×OE=$\frac{\sqrt{3}}{2}$×2=$\sqrt{3}$,
∵EF=2EM,
∴EF=2$\sqrt{3}$.
故選A.
點評 本題主要考查切線的性質,解直角三角形,正確的作出輔助線是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com