分析 (1)過點(diǎn)C、D分別作CG⊥AB,DF⊥CG,垂足分別為G,F(xiàn),根據(jù)直角三角形的性質(zhì)得出CG,再根據(jù)三角函數(shù)的定義即可得出CD的長;
(2)如圖,設(shè)漁政船調(diào)整方向后t小時(shí)能與捕漁船相會(huì)合,由題意知CE=30t,DE=1.5×2×t=3t,∠EDC=53°,過點(diǎn)E作EH⊥CD于點(diǎn)H,根據(jù)三角函數(shù)表示出EH,在Rt△EHC中,根據(jù)正弦的定義求值即可.
解答
解:(1)過點(diǎn)C、D分別作CG⊥AB,DF⊥CG,垂足分別為G,F(xiàn),
∵在Rt△CGB中,∠CBG=90°-60°=30°,
∴CG=$\frac{1}{2}$BC=$\frac{1}{2}$×(30×$\frac{1}{2}$)=7.5,
∵∠DAG=90°,
∴四邊形ADFG是矩形,
∴GF=AD=1.5,
∴CF=CG-GF=7.5-1.5=6,
在Rt△CDF中,∠CFD=90°,
∵∠DCF=53°,
∴COS∠DCF=$\frac{CF}{CD}$,
∴CD=$\frac{CF}{COS53°}$=$\frac{6}{\frac{3}{5}}$=10(海里).
答:CD兩點(diǎn)的距離是10;
(2)如圖,設(shè)漁政船調(diào)整方向后t小時(shí)能與捕漁船相會(huì)合,
由題意知CE=30t,DE=1.5×2×t=3t,∠EDC=53°,
過點(diǎn)E作EH⊥CD于點(diǎn)H,則∠EHD=∠CHE=90°,
∴sin∠EDH=$\frac{EH}{ED}$,
∴EH=EDsin53°=3t×$\frac{4}{5}$=$\frac{12}{5}$t,
∴在Rt△EHC中,sin∠ECD=$\frac{EH}{CE}$=$\frac{\frac{12}{5}t}{30t}$=$\frac{2}{25}$.
答:sin∠ECD=$\frac{2}{25}$.
點(diǎn)評(píng) 考查了解直角三角形的應(yīng)用-方向角問題,此題是一道方向角問題,結(jié)合航海中的實(shí)際問題,將解直角三角形的相關(guān)知識(shí)有機(jī)結(jié)合,體現(xiàn)了數(shù)學(xué)應(yīng)用于實(shí)際生活的思想.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{{x}^{2}+1}$ | B. | $\frac{x}{2x+1}$ | C. | $\frac{1}{{x}^{2}}$ | D. | $\frac{x-5}{x}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com