分析 (1)由CF平分∠BCD可知∠BCF=∠DCF,然后通過SAS就能證出△BFC≌△DFC.
(2)要證明AD=DE,連接BD,證明△BAD≌△BED則可.根據(jù)AB∥DF,推出∠ABD=∠BDF,由于BF=DF,于是得到∠DBF=∠BDF,等量代換得到∠ABD=∠EBD,根據(jù)等腰三角形的性質(zhì)得到BD=BD,即可得到∠BDA=∠DBC=∠BDC,于是得到結(jié)論.
解答 證明:(1)∵CF平分∠BCD,
∴∠BCF=∠DCF.
在△BFC和△DFC中,
$\left\{\begin{array}{l}{BC=CD}\\{∠BCF=∠DCF}\\{FC=FC}\end{array}\right.$,
∴△BFC≌△DFC(SAS).
(2)連接BD.![]()
∵△BFC≌△DFC,
∴BF=DF,
∴∠FBD=∠FDB.
∵DF∥AB,
∴∠ABD=∠FDB.
∴∠ABD=∠FBD.
∵AD∥BC,
∴∠BDA=∠DBC.
∵BC=DC,
∴∠DBC=∠BDC.
∴∠BDA=∠BDC.
在△BAD與△BED中,
$\left\{\begin{array}{l}{∠ABD=∠FBD}\\{BD=BD}\\{∠ADB=BDC}\end{array}\right.$,
∴△BAD≌△BED(ASA),
∴AD=DE.
點評 此題考查了梯形的性質(zhì)、平行四邊形的判定與性質(zhì)以及全等三角形的判定與性質(zhì).此題難度適中,解題的關(guān)鍵是準確作出輔助線,利用數(shù)形結(jié)合的思想求解.
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 正數(shù) | B. | 非負數(shù) | C. | 負數(shù) | D. | 不確定 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com