分析 PE=PD,理由為:過P作PF垂直于AC,PG垂直于BC,由∠PDG為△ADC的一個(gè)外角,根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩內(nèi)角之和,得到∠PDG=∠C+∠CAD,又∠CAB=30°,AD為∠CAB的平分線得到∠CAD=$\frac{1}{2}$∠CAB,求出∠PDG的度數(shù),同理∠PEF是△ABE的一個(gè)外角,即可求出∠PEF的度數(shù),發(fā)現(xiàn)兩角相等,再由垂直得到一對(duì)直角相等,根據(jù)角平分線的性質(zhì)可知PF=PG,根據(jù)“AAS”即可得到三角形PEF與三角形PDG全等,根據(jù)全等三角形的對(duì)應(yīng)邊相等即可得證.
解答 PE=PD.
證明:∵∠ABC=90°,∠C=60°,![]()
∴∠CAB=30°,
∵AD平分∠BAC,BE平分∠ABC,
∴∠CAD=∠BAD=$\frac{1}{2}$∠CAB=15°,∠ABE=∠CBE=$\frac{1}{2}$∠ABC=45°,
過點(diǎn)P作PF⊥AC,PG⊥BC,垂足分別為F、G,
則∠PFE=∠PGD=90°,
∵∠PDG為△ADC的一個(gè)外角,
∴∠PDG=∠C+∠CAD=60°+$\frac{1}{2}$∠CAB=60°+15°=75°,
∵∠PEF是△ABE的一個(gè)外角,
∴∠PEF=∠CAB+∠ABE=30°+$\frac{1}{2}$∠CBA=30°+45°=75°,
∴∠PEF=∠PDG,
∵PF⊥AC,PG⊥BC,
∴∠PFE=∠PGD=90°,
根據(jù)角平分線的性質(zhì)可知:PF=PG,
在△PFE和△PGD中,
$\left\{\begin{array}{l}{∠PFE=∠PGD}\\{∠PEF=∠PDG}\\{PF=PG}\end{array}\right.$
∴△PFE≌△PGD,
∴PE=PD.
點(diǎn)評(píng) 此題綜合考查了角平分線性質(zhì)定理、全等三角形的判定與性質(zhì)以及三角形的外角性質(zhì).遇到角平分線常經(jīng)過角平分線上的點(diǎn)作角兩邊的垂線,得到兩垂線段的長(zhǎng)相等;本題先實(shí)驗(yàn)猜想,再探索證明,其目的是考查學(xué)生提出問題,解決問題的能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 組別 | 聽寫正確的個(gè)數(shù)x | 組中值 |
| A | 0≤x<8 | 4 |
| B | 8≤x<16 | 12 |
| C | 16≤x<24 | 20 |
| D | 24≤x<32 | 28 |
| E | 32≤x<40 | 36 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 最小是1,最大是5 | B. | 最小是1,無最大值 | ||
| C. | 最小是3,最大是9 | D. | 最小是1,最大是9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com