欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.已知A、B的坐標(biāo)為(-2,0),(4,0),點(diǎn)P在直線y=$\frac{1}{2}$x+2上,若△ABP為等腰三角形,則這樣的P點(diǎn)共有5個(gè).

分析 分三種情況①PA=PB,②AB=AP,③AB=PB,前兩種情況m的值就是A和B的橫坐標(biāo),再根據(jù)勾股定理可求出.

解答 解:設(shè)P(m,$\frac{1}{2}$m+2),
因?yàn)锳、B的坐標(biāo)為(-2,0),(4,0),
①當(dāng)PA=PB時(shí),則m=$\frac{-2+4}{2}$=1,
故有一個(gè)P點(diǎn);
②當(dāng)AB=AP時(shí),則(m+2)2+($\frac{1}{2}$m+2)2=(4+2)2
解得m=-2±$\frac{2\sqrt{165}}{5}$,
故有兩個(gè)P點(diǎn);
③當(dāng)AB=PB時(shí),則(m-4)2+($\frac{1}{2}$m+2)2=62
解得:m=$\frac{14±2\sqrt{129}}{5}$,
故有兩個(gè)P點(diǎn);
故答案為:5.

點(diǎn)評(píng) 本題考查一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征和等腰三角形的性質(zhì),注意本題要分三種情況討論,不要漏解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖,正方形ABCD中,E,F(xiàn)分別為AB,CD的中點(diǎn),連接DE,BF,CE,AF,正方形ABCD的面積為1,則陰影部分的面積是$\frac{1}{4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.先化簡(jiǎn),再求值:$\frac{3{a}^{2}-ab}{-^{2}+6ab-9{a}^{2}}$,其中a=3,b=-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某條鐵路線上,包括起點(diǎn)和終點(diǎn)在內(nèi)原來(lái)共有6個(gè)車(chē)站,現(xiàn)在新增加了3個(gè)車(chē)站,鐵路上兩站之間往返的車(chē)票不一樣,那么需要增加多少種不同的車(chē)票?
想:根據(jù)題意,畫(huà)出原來(lái)A、B、C、D、E、F六個(gè)車(chē)站和新增X、Y、Z三個(gè)車(chē)站的線段圖.(X、Y、Z的位置不固定,以其中一種為例)
從上面的線段圖中可以看出:每新增1個(gè)車(chē)站需要增加新舊車(chē)站之間的車(chē)票12(種).新增3個(gè)車(chē)站則需要增加36種車(chē)票.而3個(gè)新增車(chē)站之間則需要增加6(種)不同的車(chē)票.這樣共需要增加42(種)不同的車(chē)票.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

2.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào):
(1)$\frac{-2n}{m}$=-$\frac{2n}{m}$;
(2)-$\frac{a}{-^{3}}$=$\frac{a}{^{3}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,已知△ABC,AB=AC,∠C=40°,將一個(gè)含30°角的直角三角板DEF最小銳角的頂點(diǎn)E放在BC上,將△DEF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)角α(α=∠BED且0°<α<180°).
(1)如圖1,當(dāng)∠α=110°,求證:AB∥EF;
(2)探究:在△DEF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)過(guò)程中,當(dāng)∠α等于多少度時(shí),△DEF有一條邊與AC平行?請(qǐng)直接寫(xiě)出所有的結(jié)果(∠α的度數(shù)及所對(duì)應(yīng)的平行線段),不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,點(diǎn)A、B、C均在邊長(zhǎng)為1的正方形網(wǎng)格的格點(diǎn)上,將△ABC繞著點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)得到△AB′C′,若使AB′經(jīng)過(guò)點(diǎn)C,則$\widehat{B′B}$的長(zhǎng)為( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

16.多項(xiàng)式2x2-75在實(shí)數(shù)范圍內(nèi)因式分解的結(jié)果是($\sqrt{2}$x+5$\sqrt{3}$)($\sqrt{2}$x-5$\sqrt{3}$).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

9.①已知AB=A′B′,BC=B′C′,那只要再知道∠B=∠B′,就可以根據(jù)“SAS”得到△ABC≌△A′B′C′.
②已知AB=A′B′,∠BAC=∠B′A′C′,那只要再知道∠B=∠B′,就可以根據(jù)“ASA”得到△ABC≌△A′B′C′.③已知∠C=∠C′,那只要再知道∠A=∠A′,AC=A′C′,就可以根據(jù)“ASA”得到△ABC≌△A′B′C′.

查看答案和解析>>