分析 (1)觀察題目所給等式,總結(jié)隱含的恒等變換,直接寫出所求等式.
(2)利用等式:$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$將相鄰兩個正整數(shù)的積的倒數(shù)寫成它們的倒數(shù)的差,然后計算出結(jié)果即可.
解答 解:(1)∵$\frac{1}{n}$-$\frac{1}{n+1}$=$\frac{n+1}{n(n+1)}$-$\frac{n}{n(n+1)}$=$\frac{1}{n(n+1)}$
∴$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$
(2)①$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2006×2007}$
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2006}$-$\frac{1}{2007}$
=1-$\frac{1}{2007}$
=$\frac{2006}{2007}$
②$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n+1)}$
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$
故答案為:(1)$\frac{1}{n}$-$\frac{1}{n+1}$;(2)①$\frac{2006}{2007}$;②$\frac{n}{n+1}$
點評 本題考查了數(shù)字的變化規(guī)律問題,解題的關(guān)鍵是能夠總結(jié)出題目隱含的數(shù)字變換規(guī)律并加以運用
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com