分析 (1)求出CD的長度,再根據(jù)三角形的面積公式列式計(jì)算即可得解;
(2)根據(jù)等角的余角相等解答即可;
(3)首先證明∠ACD=∠ACE,推出∠DCE=2∠ACD,再證明∠ACD=∠BCO,∠BEC=∠DCE=2∠ACD即可解決問題;
解答 (1)解:如圖1中,![]()
∵|a+3|+(b-a+1)2=0,
∴a=-3,b=4,
∵點(diǎn)C(0,-3),D(-4,-3),
∴CD=4,且CD∥x軸,
∴△BCD的面積=$\frac{1}{2}$×4×3=6;
故答案為-3,-4,6.
(2)證明:如圖2中,![]()
∵∠CPQ=∠CQP=∠OPB,AC⊥BC,
∴∠CBQ+∠CQP=90°,
又∵∠ABQ+∠CPQ=90°,
∴∠ABQ=∠CBQ,
∴BQ平分∠CBA.
(3)解:如圖3中,結(jié)論:$\frac{∠BEC}{∠BCO}$=定值=2.![]()
理由:∵AC⊥BC,
∴∠ACB=90°,
∴∠ACD+∠BCF=90°,
∵CB平分∠ECF,
∴∠ECB=∠BCF,
∴∠ACD+∠ECB=90°,
∵∠ACE+∠ECB=90°,
∴∠ACD=∠ACE,
∴∠DCE=2∠ACD,
∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°,
∴∠ACD=∠BCO,
∵C(0,-3),D(-4,-3),
∴CD∥AB,
∠BEC=∠DCE=2∠ACD,
∴∠BEC=2∠BCO,
∴$\frac{∠BEC}{∠BCO}$=2.
點(diǎn)評 本題考查了坐標(biāo)與圖形性質(zhì),三角形的角平分線,三角形的面積,三角形的內(nèi)角和定理,三角形的外角性質(zhì)等知識,熟記性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{15}{4}$ | B. | $\frac{15}{7}$ | C. | $\frac{12}{5}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | $\frac{3\sqrt{3}}{2}$ | C. | 4-$\frac{4\sqrt{3}}{3}$ | D. | 4-$\frac{3\sqrt{3}}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
| 一班 | 87.6 | 90 | 90 |
| 二班 | 87.6 | 80 | 100 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com