分析 先根據(jù)正方形的性質(zhì)得AB=AD=BC,∠DAB=∠B=90°,則可利用“SAS”判定△DAE≌△ABF,得到DE=AF,∠1=∠2,由于∠1+∠AED=90°,所以∠2+∠AED=90°,根據(jù)三角形內(nèi)角和得到∠AOE=90°,于是得到DE⊥AF.
解答
猜想:DE=AF且DE⊥AF.
證明:∵四邊形ABCD是正方形,
∴AB=AD=BC,∠DAB=∠B=90°,
在△DAE和△ABF中,
$\left\{\begin{array}{l}{AD=BD}\\{∠DAE=∠B}\\{AE=BF}\end{array}\right.$,
∴△DAE≌△ABF(SAS),
∴DE=AF,∠1=∠2.
又∵∠1+∠AED=90°,
∴∠2+∠AED=90°,
∵∠AOE+∠2+∠AED=180°,
∴∠AOE=90°,
∴DE⊥AF,
即DE=AF且DE⊥AF.
點(diǎn)評(píng) 本題考查了全等三角形的判定與性質(zhì):全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時(shí),關(guān)鍵是選擇恰當(dāng)?shù)呐卸l件.也考查了正方形的性質(zhì).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 圖象經(jīng)過(guò)點(diǎn)(1,-1) | B. | 圖象位于第二、四象限 | ||
| C. | 當(dāng)x<0時(shí),y隨x增大而增大 | D. | 圖象是中心對(duì)稱圖形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-3,-1) | B. | (3,1) | C. | (-3,1) | D. | (-1,3) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com