分析 (1)運用Rt△ABE≌Rt△BCF,再利用角的關系求得∠BGE=90°求證;
(2)△BCF沿BF對折,得到△BPF,利用角的關系證明QF=QB,在Rt△QPB中,利用勾股定理即可解決問題.
(3)先求出正方形的邊長,再根據(jù)面積比等于相似邊長比的平方,求得S△AGN=$\frac{4}{5}$,再利用S四邊形GHMN=S△AHM-S△AGN求解.
解答 (1)證明:如圖1,![]()
∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點,
∴CF=BE,
在Rt△ABE和Rt△BCF中,
$\left\{\begin{array}{l}{AB=BC}\\{∠ABE=∠BCF}\\{BE=CF}\end{array}\right.$,
∴Rt△ABE≌Rt△BCF(SAS),
∠BAE=∠CBF,
又∵∠BAE+∠BEA=90°,
∴∠CBF+∠BEA=90°,
∴∠BGE=90°,
∴AE⊥BF.
(2)解:如圖2,根據(jù)題意得,![]()
FP=FC,∠PFB=∠BFC,∠FPB=90°
∵CD∥AB,
∴∠CFB=∠ABF,
∴∠ABF=∠PFB,
∴QF=QB,
∵PF=FC=1,PB=BC=2,
在Rt△BPQ中,設QB=x,
∴x2=(x-1)2+22,
∴x=$\frac{5}{2}$,
∴AQ=BQ-AB=$\frac{5}{2}$-2=$\frac{1}{2}$.
(3)解:∵正方形ABCD的面積為4,
∴邊長為2,
∵∠BAE=∠EAM,AE⊥BF,
∴AN=AB=2,
∵∠AHM=90°,
∴GN∥HM,
∴$\frac{{S}_{△AGN}}{{S}_{△AHM}}$=($\frac{AN}{AM}$ )2,
∴$\frac{{S}_{△AGN}}{1}$=( $\frac{2}{\sqrt{5}}$)2,
∴S△AGN=$\frac{4}{5}$,
∴S四邊形GHMN=S△AHM-S△AGN=1-$\frac{4}{5}$=$\frac{1}{5}$,
∴四邊形GHMN的面積是 $\frac{1}{5}$.
點評 本題考查的是旋轉(zhuǎn)變換、翻折變換、正方形的性質(zhì)、全等三角形的判定與性質(zhì)等知識,熟知旋轉(zhuǎn)、翻折不變性是解答此題的關鍵,學會構(gòu)建方程解決問題,屬于中考壓軸題.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com