分析 (1)連接OD,如圖,根據(jù)平行線的性質(zhì)得∠1=∠A,∠2=∠ODA,加上∠A=∠ODA,所以∠1=∠2,然后根據(jù)圓心角、弧、弦的關(guān)系可判斷點(diǎn)E是$\widehat{BD}$的中點(diǎn);
(2)先證明△OCD≌△OCB得到∠ODC=∠OBC=90°,然后根據(jù)切線的判定方法得到結(jié)論;
(3)連接BD,先根據(jù)垂徑定理得到DG=FG,再利用圓周角定理得到∠ADB=90°,則可根據(jù)勾股定理計(jì)算出BD,然后利用面積法計(jì)算出DG,從而得到DF的長.
解答 (1)證明:連接OD,如圖,
∵AD∥OC,
∴∠1=∠A,∠2=∠ODA,![]()
∵OA=OD,
∴∠A=∠ODA,
∴∠1=∠2,
∴$\widehat{BE}$=$\widehat{DE}$,即點(diǎn)E是$\widehat{BD}$的中點(diǎn);
(2)證明:在△OCD和△OCB中
$\left\{\begin{array}{l}{OD=OB}\\{∠1=∠2}\\{OC=OC}\end{array}\right.$,
∴△OCD≌△OCB,
∴∠ODC=∠OBC=90°,
∴OD⊥CD,
∴CD是⊙O的切線;
(3)解:連接BD,
∵DF⊥AB,
∴DG=FG,
∵AB為直徑,
∴∠ADB=90°,
在Rt△ADB中,BD=$\sqrt{A{B}^{2}-A{D}^{{2}^{\;}}}$=$\sqrt{2{0}^{2}-1{2}^{2}}$=16,
∵$\frac{1}{2}$•DG•AB=$\frac{1}{2}$•AD•BD,
∴DG=$\frac{12×16}{20}$=$\frac{48}{5}$,
∴DF=2DG=$\frac{96}{5}$.
點(diǎn)評 本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.當(dāng)已知條件中明確指出直線與圓有公共點(diǎn)時,常連接過該公共點(diǎn)的半徑,證明該半徑垂直于這條直線.也考查了圓周角定理和垂徑定理.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2 | B. | -1 | C. | 0 | D. | -3.5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 開口方向向下 | B. | 頂點(diǎn)坐標(biāo)為(-2,6) | ||
| C. | 對稱軸為y軸 | D. | 圖象是一條拋物線 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com