分析 應(yīng)用:(1)利用一組對(duì)邊平行且相等的四邊形是平行四邊形,得到四邊形ABFE是平行四邊形,然后根據(jù)平行四邊形的性質(zhì)證得OE=OB,即可證得△AOE和△AOB是友好三角形;
(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中點(diǎn),則可以求得△ABE、△ABF的面積,根據(jù)S四邊形CDOF=S矩形ABCD-2S△ABF即可求解.
探究:畫出符合條件的兩種情況:①求出四邊形A′DCB是平行四邊形,求出BC和A′D推出∠ACB=90°,根據(jù)三角形面積公式求出即可;②求出高CQ,求出△A′DC的面積.即可求出△ABC的面積
解答 應(yīng)用:(1)證明:∵四邊形ABCD是矩形,
∴AD∥BC,
∵AE=BF,
∴四邊形ABFE是平行四邊形,
∴OE=OB,
∴△AOE和△AOB是友好三角形.
(2)解:∵△AOE和△DOE是友好三角形,
∴S△AOE=S△DOE,AE=ED=$\frac{1}{2}$AD=3,
∵△AOB與△AOE是友好三角形,
∴S△AOB=S△AOE,
∵△AOE≌△FOB,
∴S△AOE=S△FOB,
∴S△AOD=S△ABF,
∴S四邊形CDOF=S矩形ABCD-2S△ABF=4×6-2×$\frac{1}{2}$×4×3=12.
探究:
解:分為兩種情況:①如圖1,![]()
∵S△ACD=S△BCD.
∴AD=BD=$\frac{1}{2}$AB=4,
∵沿CD折疊A和A′重合,
∴AD=A′D=$\frac{1}{2}$AB=$\frac{1}{2}$×8=4,
∵△A′CD與△ABC重合部分的面積等于△ABC面積的$\frac{1}{4}$,
∴S△DOC=$\frac{1}{4}$S△ABC=$\frac{1}{2}$S△BDC=$\frac{1}{2}$S△ADC=$\frac{1}{2}$S△A′DC,
∴DO=OB,A′O=CO,
∴四邊形A′DCB是平行四邊形,
∴BC=A′D=4,
過B作BM⊥AC于M,
∵AB=8,∠BAC=30°,
∴BM=$\frac{1}{2}$AB=4=BC,
即C和M重合,
∴∠ACB=90°,
由勾股定理得:AC=$\sqrt{{8}^{2}-{4}^{2}}$=4$\sqrt{3}$,
∴△ABC的面積是$\frac{1}{2}$×BC×AC=$\frac{1}{2}$×4×4$\sqrt{3}$=8$\sqrt{3}$;
②如圖2,![]()
∵S△ACD=S△BCD.
∴AD=BD=$\frac{1}{2}$AB,
∵沿CD折疊A和A′重合,
∴AD=A′D=$\frac{1}{2}$AB=$\frac{1}{2}$×8=4,
∵△A′CD與△ABC重合部分的面積等于△ABC面積的$\frac{1}{4}$,
∴S△DOC=$\frac{1}{4}$S△ABC=$\frac{1}{2}$S△BDC=$\frac{1}{2}$S△ADC=$\frac{1}{2}$S△A′DC,
∴DO=OA′,BO=CO,
∴四邊形A′BDC是平行四邊形,
∴A′C=BD=4,
過C作CQ⊥A′D于Q,
∵A′C=4,∠DA′C=∠BAC=30°,
∴CQ=$\frac{1}{2}$A′C=2,
∴S△ABC=2S△ADC=2S△A′DC=2×$\frac{1}{2}$×A′D×CQ=2×$\frac{1}{2}$×4×2=8;
即△ABC的面積是8或8$\sqrt{3}$.
點(diǎn)評(píng) 此題是幾何變換綜合題,主要考查了平行四邊形性質(zhì)和判定,三角形的面積,勾股定理的應(yīng)用,解這個(gè)題的關(guān)鍵是能根據(jù)已知題意和所學(xué)的定理進(jìn)行推理.題目比較好,但是有一定的難度.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com