分析 (1)證明Rt△ABO∽Rt△CAO,利用相似比計算出OC=4,于是可得到點C的坐標為(4,0);
(2)先利用勾股定理計算出AB和AC,而BC=5,然后根據(jù)三角形周長的定義求解.
解答 解:(1)∵AB⊥AC,
∴∠BAC=90°,即∠BAO+∠CAO=90°,
而∠BAO+∠ABO=90°,
∴∠CAO=∠ABO,
∴Rt△ABO∽Rt△CAO,
∴$\frac{OA}{OC}$=$\frac{OB}{OA}$,即$\frac{2}{OC}$=$\frac{1}{2}$,
∴OC=4,
∴點C的坐標為(4,0);
(2)在Rt△AOB中,AB=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$,
在Rt△AOC中,AC=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$,
BC=4-(-1)=5,
所以Rt△BAC的周長=AB+AC+BC=$\sqrt{5}$+2$\sqrt{5}$+5=3$\sqrt{5}$+5.
點評 本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.也考查了坐標與圖形性質(zhì).
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com