分析 (1)先由SAS證明△ABC≌△ADE,得出BC=DE,再由已知條件得出BM=CM=$\frac{1}{2}$BC,AN=$\frac{1}{2}$DE=$\frac{1}{2}$BC,即可得出結(jié)論;
(2)延長AN至F,使NF=AN,連接DF,先證明△ANE≌△FND,得出DF=AE=AC,∠F=NAE,證出DF∥AE,再證出∠FDA=∠BAC,由SAS證明△ABC≌△DAF,得出BC=AF,即可得出結(jié)論.
解答 解:(1)BM=AN;證明如下:
∵△ABD和△ACE是等腰直角三角形,
∴AB=AD,AC=AE,∠BAD=∠CAE=90°,
又∵∠BAC=90°,
∴∠EAD=90°.
∴∠BAC=∠DAE,
在△ABC和△ADE中,$\left\{\begin{array}{l}{AB=AD}&{\;}\\{∠BAC=∠DAE}&{\;}\\{AC=AE}&{\;}\end{array}\right.$,
∴△ABC≌△ADE(SAS),
∴BC=DE,
∵M是BC的中點,N是DE的中點,
∴BM=CM=$\frac{1}{2}$BC,AN=$\frac{1}{2}$DE=$\frac{1}{2}$BC,
∴BM=AN;
(2)成立;證明如下:如圖2所示:![]()
延長AN至F,使NF=AN,連接DF,
∵N是DE的中點,
∴DN=NE,
在△ANE和△FND中,$\left\{\begin{array}{l}{NE=DN}&{\;}\\{∠ANE=∠FND}&{\;}\\{AN=NF}&{\;}\end{array}\right.$,
∴△ANE≌△FND(SAS),
∴DF=AE=AC,∠F=NAE,
∴DF∥AE,
∴∠FDA+∠DAE=180°,
∵∠BAC+∠DAE=360°-∠BAD-∠CAE=180°,
∴∠FDA=∠BAC,
在△ABC和△DAF中,$\left\{\begin{array}{l}{AB=AD}&{\;}\\{∠BAC=∠FDA}&{\;}\\{AC=DF}&{\;}\end{array}\right.$,
∴△ABC≌△DAF(SAS),
∴BC=AF,
∵BM=CM=$\frac{1}{2}$BC,AN=$\frac{1}{2}$AF=$\frac{1}{2}$BC,
∴BM=AN.
點評 本題考查了等腰直角三角形的性質(zhì)、全等三角形的判定與性質(zhì)以及平行線的判定;證明三角形全等是解決問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ∠ACB=∠AOE | B. | AD=BD | C. | S△AOB=$\frac{1}{2}$S△ABC | D. | AE=BE |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 握手圖標(biāo) | 握手人數(shù) | 握手次數(shù) |
| 2 | 1 | |
| 3 | 3=1+2 | |
| 4 | 6=1+2+3 | |
| 5 | 10=1+2+3+4 | |
| … | … | … |
| … | N | P=1+2+3+…+(n+1) |
| 圖標(biāo) | 直線條數(shù) | 交點個數(shù) |
| 2 | 1 | |
| 3 | 3=1+2 | |
| 4 | ||
| 5 | ||
| … | … | … |
| … | n |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com