分析 過H作HE⊥BC于點E,可求得E點坐標(biāo)和圓的半徑,連接BH,在Rt△BEH中,可求得HE的長,可求得H點坐標(biāo),代入雙曲線解析式可求得k.
解答
解:
過H作HE⊥BC于點E,連接BH,AH,如圖,
∵B(2,0),C(6,0),
∴BC=4,
∴BE=$\frac{1}{2}$BC=2,
∴OE=OB+BE=2+2=4,
又⊙H與y軸切于點A,
∴AH⊥y軸,
∴AH=OE=4,
∴BH=4,
在Rt△BEH中,BE=2,BH=4,
∴HE=2$\sqrt{3}$,
∴H點坐標(biāo)為(4,-2$\sqrt{3}$),
∵y=$\frac{k}{x}$經(jīng)過圓心H,
∴k=-8$\sqrt{3}$,
故答案為:-8$\sqrt{3}$.
點評 本題主要考查切線的性質(zhì)和垂徑定理,由條件求得圓的半徑從而求得H點的坐標(biāo)是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 16$\sqrt{3}$m2 | B. | 32$\sqrt{3}$m2 | C. | $\sqrt{3}$m2 | D. | 96$\sqrt{3}$m2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com