分析 根據(jù)直角三角形的性質(zhì)求出BC、AC的長度,設(shè)點(diǎn)B掃過的路線與AB的交點(diǎn)為D,連接CD,可以證明△BCD是等邊三角形,然后求出點(diǎn)D是AB的中點(diǎn),所以△ACD的面積等于△ABC的面積的一半,然后根據(jù)△ABC掃過的面積=S扇形ACA1+S扇形BCD+S△ACD,然后根據(jù)扇形的面積公式與三角形的面積公式列式計(jì)算即可得解.
解答 解:在△ABC中,∠ACB=90°,∠BAC=30°,AB=4,
∴BC=$\frac{1}{2}$AB=2,∠B=90°-∠BAC=60°,
∴AC=$\sqrt{{AB}^{2}-{BC}^{2}}$=2$\sqrt{3}$,![]()
∴S△ABC=$\frac{1}{2}$×BC×AC=2$\sqrt{3}$,
設(shè)點(diǎn)B掃過的路線與AB的交點(diǎn)為D,連接CD,
∵BC=DC,
∴△BCD是等邊三角形,
∴BD=CD=2,
∴點(diǎn)D是AB的中點(diǎn),
∴S△ACD=$\frac{1}{2}$S△ABC=$\frac{1}{2}$×2$\sqrt{3}$=$\sqrt{3}$,
∴△ABC掃過的面積=S扇形ACA1+S扇形BCD+S△ACD,
=$\frac{90}{360}$×π×(2$\sqrt{3}$)2+$\frac{60}{360}$×π×22+$\sqrt{3}$,
=$\frac{11}{3}$π+$\sqrt{3}$.
故答案為:$\frac{11}{3}$π+$\sqrt{3}$.
點(diǎn)評(píng) 此題考查了扇形面積的計(jì)算、旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)以及等邊三角形的性質(zhì),注意掌握旋轉(zhuǎn)前后圖形的對(duì)應(yīng)關(guān)系,利用數(shù)形結(jié)合思想把掃過的面積分成兩個(gè)扇形的面積與一個(gè)三角形面積是解題的關(guān)鍵,也是本題的難點(diǎn).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com