分析 (1)AB≠AC;就是要證明無論k為何值時,方程總有兩個不相等的實數(shù)根,就是證明△>0,而△=(2k+3)2-4(k2+3k+2)=1,所以△>0;
(2)要得到△ABC是以BC為斜邊的直角三角形,即要有BC2=AC2+AB2,然后根據(jù)根與系數(shù)的關(guān)系用k表示AC2+AC2,得到k的方程,解方程,再根據(jù)題意取舍即可;
(3)根據(jù)等腰三角形的性質(zhì),分三種情況討論:①AB=AC,②AB=BC,③BC=AC;后兩種情況相同,則可有另種情況,再由根與系數(shù)的關(guān)系得出k的值.
解答 (1)證明:∵△=(2k+3)2-4(k2+3k+2)=1,
∴△>0,
∴無論k取何值時,方程總有兩個不相等的實數(shù)根,
即AB≠AC;
(2﹚解:當△ABC是以BC為斜邊的直角三角形時,有AB2+AC2=BC2
又∵BC=5,兩邊AB、AC的長是關(guān)于x的一元二次方程x2+(2k+3)x+k2+3k+2=0的兩個實數(shù)根.
∴AB2+AC2=25,AB+AC=-(2k+3),AB•AC=k2+3k+2,
由(AB+AC)2-2AB•AC=25
∴(2k+3)2-2•(k2+3k+2)=25
∴k2+3k-10=0,(k-2)(k+5)=0,
∴k1=2或k2=-5
又∵AB+AC=-(2k+3)>0
∴k1=2舍去
∴k=-5;
(3)∵△ABC是等腰三角形;
∴當AB=AC時,△=b2-4ac=0,
∴(2k+3)2-4(k2+3k+2)=0
解得k不存在;
當AB=BC時,即AB=5,
∴5+AC=-(2k+3),5AC=k2+3k+2,
解得k=-6或-7,
∴AC=4或6
∴△ABC的周長為14或16.
即當k=-6或-7時,△ABC是等腰三角形,△ABC的周長為14或16.
點評 本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.同時考查了勾股定理的逆定理、等腰三角形的性質(zhì)和一元二次方程的解法.
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 上周末收盤價 | 周一 | 周二 | 周三 | 周四 | 周五 |
| 10 | +4.5 | -1.5 | +3 | -2.5 | -5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1、2、-3 | B. | 1、2、3 | C. | 1、-2、3 | D. | 1、-2、-3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0 | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5x2-x2=5 | B. | 4a2+3a2=7a4 | C. | 5+y=5y | D. | -0.25mn+$\frac{1}{4}$mn=0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{2}{x}$+2=5 | B. | $\frac{3x-1}{2}$+4=3x | C. | y2+3y=0 | D. | 9x-y=2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com