分析 (1過點(diǎn)D作DH⊥BC于H,根據(jù)已知條件,∠BAC=90°,AB=AC,BD是∠ABC的平分線,得到DH=AD,在等腰直角三角形CDH中,求得CD;
(2)延長(zhǎng)CE、BA相交于點(diǎn)F.可以證明Rt△ABD≌Rt△ACF,再證明△BCE≌△BFE得到CE=EF,就可以得出結(jié)論.
解答 解:(1)
如圖1,過點(diǎn)D作DH⊥BC于H,
∵AB=AC,∠BAC=90°,
∴∠BCA=45°,
∴DH=CH,
∵BD是∠ABC的平分線,
∴DH=AD=1,
∴CD=$\sqrt{2}$;
(2)如圖2,延長(zhǎng)CE、BA相交于點(diǎn)F,
∵∠EBF+∠F=90°,∠ACF+∠F=90°,![]()
∴∠EBF=∠ACF,
在△ABD和△ACF中$\left\{\begin{array}{l}{∠EBF=∠ACF}\\{AB=AC}\\{∠BAC=∠CAF}\end{array}\right.$
∴△ABD≌△ACF(ASA),
∴BD=CF,
在△BCE和△BFE中$\left\{\begin{array}{l}{∠EBF=∠CBF}\\{BE=BE}\\{∠CEB=∠FEB}\end{array}\right.$,
∴△BCE≌△BFE(ASA),
∴CE=EF,
∴BD=2CE.
點(diǎn)評(píng) 本題主要考查了角平分線性質(zhì),全等三角形判定和性質(zhì),能夠想到延長(zhǎng)CE、BA相交于點(diǎn)F,構(gòu)造全等三角形是解決本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (0,7) | B. | (-1,7) | C. | (-2,7) | D. | (-3,7) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 65° | B. | 35° | C. | 55° | D. | 45° |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com