分析 (1)根據(jù)二次根式的非負(fù)性得:a=$\sqrt{5}$,b=$\sqrt{5}$,表示出點(diǎn)A、B的坐標(biāo),并知道△AOB是等腰直角三角形;
(2)連接OC,如圖1,證明△CBF≌△COE,得OE=BF,根據(jù)線段的差可得結(jié)論;
(3)作輔助線,構(gòu)建三角形全等,分別證明△COF≌△CAG和△CEF≌△CEG,設(shè)EF=x,構(gòu)建勾股定理列方程可得結(jié)論.
解答
解:(1)由題意得:a-$\sqrt{5}$=0,
a=$\sqrt{5}$,
∴b=$\sqrt{5}$,
∴A(0,$\sqrt{5}$),B($\sqrt{5}$,0),
∴OA=OB=$\sqrt{5}$,
∵∠AOB=90°,
∴△AOB是等腰直角三角形;
(2)連接OC,如圖1,
∵C是AB的中點(diǎn),△AOB是等腰直角三角形,
∴OC=BC,OC⊥AB,∠COB=∠CBO=45°,
∴∠OCE+∠ECB=90°,
∵∠ECF=90°,
∴∠ECB+∠BCF=90°,
∴∠OCE=∠BCF,
∵∠EOC=90°+45°=135°,
∠CBF=180°-45°=135°,![]()
∴∠EOC=∠CBF,
∴△CBF≌△COE,
∴OE=BF,
∴OF-OE=OF-BF=OB=$\sqrt{5}$;
(3)如圖3,連接OC,過(guò)C作CG⊥CF,交y軸于G,
同理得:OC=AC,∠COF=∠CAG=135°,
∵∠ECF=45°,
∴∠ECG=∠ACE+∠FCO=45°,
即∠ACE+∠ACG=∠ACE+∠FCO,
∴∠ACG=∠FCO,
∴△COF≌△CAG,
∴OF=AG,CF=CG,
∵CE=CE,
∴△CEF≌△CEG,
∴EF=EG,
設(shè)EF=x,則EF=$\frac{3\sqrt{5}}{2}$-x,OE=x+$\sqrt{5}$-($\frac{3\sqrt{5}}{2}$-x)=2x-$\frac{\sqrt{5}}{2}$,
由勾股定理得:($\frac{3\sqrt{5}}{2}$-x)2=x2+(2x-$\frac{\sqrt{5}}{2}$)2,
解得:x=$\frac{-\sqrt{5}±\sqrt{210}}{8}$,
∴OF=$\frac{-\sqrt{5}+\sqrt{210}}{8}$,
∴F($\frac{\sqrt{5}-\sqrt{210}}{8}$,0).
點(diǎn)評(píng) 本題是三角形的綜合題,考查了等腰直角三角形的性質(zhì)、全等三角形的性質(zhì)和判定、勾股定理,本題第三問(wèn)較難,恰當(dāng)?shù)刈鞒鲚o助線構(gòu)建全等三角形的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4 | B. | 2 | C. | 0 | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com