分析 (1)可通過證明∠BAF=∠AED,∠AFB=∠D,證得△ABF∽△EAD;
(2)根據(jù)平行線的性質(zhì)得到BE⊥AB,根據(jù)三角函數(shù)的定義得到tan∠BAE=$\frac{AB}{EA}=\frac{\sqrt{3}}{2}$,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
解答 (1)證明:在平行四邊形ABCD中,
∵∠D+∠C=180°,AB∥CD,
∴∠BAF=∠AED.
∵∠AFB+∠BFE=180°,∠D+∠C=180°,∠BFE=∠C,![]()
∴∠AFB=∠D,
∴△ABF∽△EAD;
(2)解:∵BE⊥CD,AB∥CD,
∴BE⊥AB.
∴∠ABE=90°.
在Rt△ABE中,∠BAE=30°,
∴tan∠BAE=$\frac{AB}{EA}=\frac{\sqrt{3}}{2}$,
∵由(1)知,△ABF∽△EAD,
∴$\frac{AB}{EA}=\frac{BF}{AD}$,
∵AD=3,
∴BF=$\frac{3\sqrt{3}}{2}$.
點(diǎn)評 本題主要考查了相似三角形的判定和性質(zhì),同時也用到了平行四邊形的性質(zhì)和等角的補(bǔ)角相等等知識點(diǎn).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 7.5×106 | B. | 0.75×107 | C. | 7.5×107 | D. | 75×105 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{15}{18}$ | B. | $\frac{5}{18}$ | C. | $\frac{11}{18}$ | D. | $\frac{9}{18}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $sinB=\frac{AD}{AB}$ | B. | $sinB=\frac{AC}{BC}$ | C. | $sinB=\frac{AD}{AC}$ | D. | $sinB=\frac{CD}{AC}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com