分析 先根據(jù)等邊三角形的性質(zhì)得AB=AC,∠BAC=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得AD=AE=5,∠DAE=∠BAC=60°,CE=BD=6,于是可判斷△ADE為等邊三角形,得到DE=AD=5;過E點(diǎn)作EH⊥CD于H,如圖,設(shè)DH=x,則CH=4-x,利用勾股定理得到52-x2=62-(4-x)2,解得x=$\frac{5}{8}$,再計(jì)算出EH,然后根據(jù)正切的定義求解.
解答 解:∵△ABC為等邊三角形,![]()
∴AB=AC,∠BAC=60°,
∵△ABD繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)得△ACE,
∴AD=AE=5,∠DAE=∠BAC=60°,CE=BD=6,
∴△ADE為等邊三角形,
∴DE=AD=5,
過E點(diǎn)作EH⊥CD于H,如圖,設(shè)DH=x,則CH=4-x,
在Rt△DHE中,EH2=52-x2,
在Rt△CHE中,EH2=62-(4-x)2,
∴52-x2=62-(4-x)2,解得x=$\frac{5}{8}$,
∴EH=$\sqrt{{5}^{2}-(\frac{5}{8})^{2}}$=$\frac{15\sqrt{7}}{8}$,
在Rt△EDH中,tan∠HDE=$\frac{EH}{DH}$=$\frac{\frac{15\sqrt{7}}{8}}{\frac{5}{8}}$=3$\sqrt{7}$,
即∠CDE的正切值為3$\sqrt{7}$.
故答案為:3$\sqrt{7}$.
點(diǎn)評 本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等邊三角形的性質(zhì)和解直角三角形.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x<2 | B. | x<$\frac{1}{2}$ | C. | x>2 | D. | x>$\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
| 型號(hào) | A | B |
| 單個(gè)盒子容量(升) | 2 | 3 |
| 單價(jià)(元) | 5 | 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 鰱魚 | 草魚 | 青魚 | |
| 每輛汽車載魚量(噸) | 8 | 6 | 5 |
| 每噸魚獲利(萬元) | 0.25 | 0.3 | 0.2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com