分析 (1)連接CF,根據(jù)“HL”證明Rt△CDF和Rt△CEF全等,根據(jù)全等三角形對應邊相等可得DF=EF,根據(jù)正方形的對角線平分一組對角可得∠EAF=45°,求出△AEF是等腰直角三角形,再根據(jù)等腰直角三角形的性質(zhì)可得AE=EF,然后等量代換即可得證;
(2)根據(jù)正方形的對角線等于邊長的$\sqrt{2}$倍求出AC,然后求出AE,過點E作EH⊥AB于H,判斷出△AEH是等腰直角三角形,然后求出EH=AH=$\frac{\sqrt{2}}{2}$AE,再求出BH,然后利用勾股定理列式計算即可得解.
解答 (1)證明:如圖,連接CF,
在Rt△CDF和Rt△CEF中,$\left\{\begin{array}{l}{CF=CF}\\{CE=CD}\end{array}\right.$,
∴Rt△CDF≌Rt△CEF(HL),
∴DF=EF,
∵AC是正方形ABCD的對角線,
∴∠EAF=45°,![]()
∴△AEF是等腰直角三角形,
∴AE=EF,
∴DF=AE;
(2)解:∵AB=2,
∴AC=$\sqrt{2}$AB=2$\sqrt{2}$,
∵CE=CD,
∴AE=2$\sqrt{2}$-2,
過點E作EH⊥AB于H,
則△AEH是等腰直角三角形,
∴EH=AH=$\frac{\sqrt{2}}{2}$AE=$\frac{\sqrt{2}}{2}$×(2$\sqrt{2}$-2)=2-$\sqrt{2}$,
∴AE=$\sqrt{2}$EH=2$\sqrt{2}$-2,
∴AF=$\sqrt{2}$AE=4-2$\sqrt{2}$.
點評 本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),勾股定理的應用,作輔助線構(gòu)造出全等三角形和直角三角形是解題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 50$\sqrt{3}$ | B. | 100$\sqrt{3}$ | C. | 200$\sqrt{3}$ | D. | 400$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 2$\sqrt{2}$ | B. | 4$\sqrt{2}$ | C. | 8$\sqrt{2}$ | D. | 16$\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com