分析 (1)如圖1中,作EH⊥BA于H.只要證明△HPE≌△CBP,推出BC=PH=AB,HE=PB,推出PB=AH=EH,推出∠HAE=45°,即可解決問題;
(2)作EK∥AB交BD于K.首先證明四邊形ABKE是平行四邊形,再證明△GEK≌△GCD,可得GD=GK,根據(jù)BD=$\sqrt{2}$CD,即可解決問題;
(3)理由(1)(2)中結(jié)論即可解決問題;
解答 (1)解:如圖1中,作EH⊥BA于H.![]()
∵四邊形ABCD是正方形,
∴∠B=∠BAD=∠HAD=90°,AB=BC,
∵EP⊥PC,
∴∠EPC=90°,
∴∠BPC+∠HPE=90°,∠BPC+∠BCP=90°,
∴∠HPE=∠BCP,
在△HPE和△CBP中,
$\left\{\begin{array}{l}{∠H=∠B=90°}\\{∠HPE=∠BCP}\\{PE=PC}\end{array}\right.$,
∴△HPE≌△CBP,
∴BC=PH=AB,HE=PB,
∴PB=AH=EH,
∴∠HAE=45°,
∴∠EAD=45°.
(2)證明:作EK∥AB交BD于K.![]()
∵∠EAD=∠ABD=45°,
∴AE∥BK,∵AB∥EK,
∴四邊形ABKE是平行四邊形,
∴EK=AB=CD,AE=BK,
∵AB∥CD,∴EK∥CD,
∴∠GEK=∠GCD,
∴△GEK≌△GCD,
∴GD=GK,
∵BD=$\sqrt{2}$CD,BD=BK+DK=AE+2DG,
∴AE+2DG=$\sqrt{2}$CD.
(3)解:由(1)可知AE=4$\sqrt{2}$,由(2)可知4$\sqrt{2}$+2DG=10$\sqrt{2}$,
∴DG=3$\sqrt{2}$,
∵BD=10$\sqrt{2}$,
∴BG=7$\sqrt{2}$.
點評 本題考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)、平行四邊形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考常考題型.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x1=x2=3 | B. | x1=x2=1 | C. | x1=x2=-1 | D. | x1=x2=-3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com