| A. | $\frac{am}{m+n}$ | B. | $\frac{an}{m+n}$ | C. | $\frac{an}{m}$ | D. | $\frac{am}{n}$ |
分析 由題意得到四邊形DECF為平行四邊形,進而得到對邊相等,再由平行得比例,表示出DE,即為FC,由BC-FC表示出BF即可.
解答 解:∵DE∥BC,DF∥AC,
∴四邊形DECF為平行四邊形,
∴DE=FC,
∴$\frac{AE}{AE+EC}$=$\frac{DE}{BC}$,
∵AE:EC=m:n,BC=a,
∴$\frac{m}{m+n}$=$\frac{DE}{a}$,即DE=$\frac{am}{m+n}$,
∴FC=$\frac{am}{m+n}$,
則BF=BC-CF=a-$\frac{am}{m+n}$=$\frac{an}{m+n}$,
故選B
點評 此題考查了相似三角形的判定與性質(zhì),平行四邊形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解本題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | $\frac{11}{2}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 2,$\frac{1}{3}$ | B. | 2,1 | C. | 7,3 | D. | 3,3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com