分析 由題意,可求得點(diǎn)A與B的坐標(biāo),由勾股定理,可求得AB的值,又由折疊的性質(zhì),可求得AB′與OB′的長(zhǎng),BM=B′M,然后設(shè)MO=x,由在Rt△OMB′中,OM2+OB′2=B′M2,求出x的值,進(jìn)而求出△AMO的面積.
解答 解:令y=0得x=6,令x=0得y=8,![]()
∴點(diǎn)A的坐標(biāo)為:(6,0),點(diǎn)B坐標(biāo)為:(0,8),
∵∠AOB=90°,
∴AB=$\sqrt{O{A}^{2}+O{B}^{2}}$=10,
由折疊的性質(zhì),得:AB=AB′=10,
∴OB′=AB′-OA=10-6=4,
設(shè)MO=x,則MB=MB′=8-x,
在Rt△OMB′中,OM2+OB′2=B′M2,
即x2+42=(8-x)2,
解得:x=3,
S△AMO=$\frac{1}{2}$OM•OA=$\frac{1}{2}$×3×6=9.
故答案為9.
點(diǎn)評(píng) 此題考查了折疊的性質(zhì)、一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、勾股定理等知識(shí),解答本題的關(guān)鍵是求出OM的長(zhǎng)度,此題難度適中,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1對(duì) | B. | 2對(duì) | C. | 4對(duì) | D. | 8對(duì) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com