分析 根據(jù)二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0),頂點(diǎn)坐標(biāo)是(-$\frac{2a}$,$\frac{4ac-^{2}}{4a}$),對稱軸是x=-$\frac{2a}$,當(dāng)a>0時,在對稱軸左側(cè)y隨x的增大而減小,在對稱軸右側(cè)y隨x的增大而增大;當(dāng)a<0時,在對稱軸左側(cè)y隨x的增大而增大,在對稱軸右側(cè)y隨x的增大而減小,可得答案.
解答 解:y=-3x2+x-4化為y=a(x-h)2+k的形式為y=-3(x-$\frac{1}{6}$)2-$\frac{47}{12}$,開口向下,對稱軸是x=$\frac{1}{6}$頂點(diǎn)坐標(biāo)是($\frac{1}{6}$,-$\frac{47}{12}$),當(dāng)x=$\frac{1}{6}$時,y有最大值,為-$\frac{47}{12}$,當(dāng)x<$\frac{1}{6}$時,y隨x增大而增大,當(dāng)x>$\frac{1}{6}$時,y隨x時,y隨x增大而減小,拋物線與y軸交點(diǎn)的坐標(biāo)為(0,-4),
故答案為:-3(x-$\frac{1}{6}$)2-$\frac{47}{12}$,下,x=$\frac{1}{6}$,($\frac{1}{6}$,-$\frac{47}{12}$),$\frac{1}{6}$,大,-$\frac{47}{12}$,<$\frac{1}{6}$,>$\frac{1}{6}$,(0,-4).
點(diǎn)評 主要考查了函數(shù)的單調(diào)性.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0),頂點(diǎn)坐標(biāo)是(-$\frac{2a}$,$\frac{4ac-^{2}}{4a}$),對稱軸是x=-$\frac{2a}$,當(dāng)a>0時,在對稱軸左側(cè)y隨x的增大而減小,在對稱軸右側(cè)y隨x的增大而增大;當(dāng)a<0時,在對稱軸左側(cè)y隨x的增大而增大,在對稱軸右側(cè)y隨x的增大而減。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 甲先到B點(diǎn) | B. | 乙先到B點(diǎn) | C. | 丙先到B點(diǎn) | D. | 無法確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | -2 | C. | ±2 | D. | 以上都不對 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com