分析 作NF⊥AD,垂足為F,連接DD′,ND′,根據(jù)圖形折疊的性質(zhì)得出DD′⊥MN,先證明△DAD′∽△DEM,再證明△NFM≌△DAD′,然后利用勾股定理的知識(shí)求出MN的長(zhǎng).
解答 解:作NF⊥AD,垂足為F,連接DD′,ND′,
∵將正方形紙片ABCD折疊,使得點(diǎn)D落在邊AB上的D′點(diǎn),折痕為MN,
∴DD′⊥MN,
∵∠A=∠DEM=90°,∠ADD′=∠EDM,
∴△DAD′∽△DEM,
∴∠DD′A=∠DME,![]()
在△NFM和△DAD′中
$\left\{\begin{array}{l}{∠DD′A=∠NMF}\\{∠A=∠NFM}\\{NF=DA}\end{array}\right.$,
∴△NFM≌△DAD′(AAS),
∴FM=AD′=2cm,
又∵在Rt△MNF中,F(xiàn)N=6cm,
∴根據(jù)勾股定理得:MN=$\sqrt{F{N}^{2}+F{M}^{2}}$=$\sqrt{{6}^{2}+{2}^{2}}$=2$\sqrt{10}$.
故答案為:2$\sqrt{10}$.
點(diǎn)評(píng) 此題主要考查了圖形的翻折變換,根據(jù)圖形折疊前后圖形不發(fā)生大小變化得出三角形的全等是解決問(wèn)題的關(guān)鍵,難度一般.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 5÷tan26°= | B. | 5÷sin26°= | C. | 5×cos26°= | D. | 5×tan26°= |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ∠AED=∠B | B. | ∠ADE=∠C | C. | $\frac{AD}{AE}$=$\frac{AC}{AB}$ | D. | $\frac{AD}{AB}$=$\frac{AE}{AC}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com