分析 (1)根據(jù)三個矩形面積相等,得到矩形AEFD面積是矩形BCFE面積的2倍,可得出AE=2BE,設(shè)BE=a,則有AE=2a,根據(jù)圍欄的總長為80m表示出a;
(2)表示出AB的長,進(jìn)而根據(jù)矩形的面積公式表示出y與x的關(guān)系式,并求出x的范圍即可;
(2)利用二次函數(shù)的性質(zhì)求出y的最大值,以及此時x的值即可.
解答 解:(1)∵三塊矩形區(qū)域的面積相等,
∴矩形AEFD面積是矩形BCFE面積的2倍,
∴AE=2BE,
設(shè)BE=FC=a,則AE=HG=DF=2a,
∴DF+FC+HG+AE+EB+EF+BC=80,即8a+2x=80,
∴a=-$\frac{1}{4}$x+10,即BE=-$\frac{1}{4}$x+10,
故答案為:-$\frac{1}{4}$x+10;
(2)由(1)知3a=-$\frac{3}{4}$x+30,
∴y=(-$\frac{3}{4}$x+30)x=-$\frac{3}{4}$x2+30x,
∵a=-$\frac{1}{4}$x+10>0,
∴15≤x<40,
則y=-$\frac{3}{4}$x2+30x(15≤x<40);
(3)∵y=-$\frac{3}{4}$x2+30x=-$\frac{3}{4}$(x-20)2+300(0<x<40),且二次項系數(shù)為-$\frac{3}{4}$<0,
∴當(dāng)x=20時,y有最大值,最大值為300平方米.
點評 此題考查了二次函數(shù)的應(yīng)用以及列代數(shù)式,根據(jù)題意表示出矩形的寬并熟練掌握二次函數(shù)的性質(zhì)是解本題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com