分析 (1)理解新定義,按照新定義的要求求出兩個(gè)距離值;
(2)如答圖2所示,當(dāng)點(diǎn)B落在⊙A上時(shí),m的取值范圍為2≤m≤6:
當(dāng)4≤m≤6,顯然線段BC與線段OA的距離等于⊙A半徑,即d=2;
當(dāng)2≤m<4時(shí),作BN⊥x軸于點(diǎn)N,線段BC與線段OA的距離等于BN長(zhǎng);
(3)在準(zhǔn)確理解點(diǎn)M運(yùn)動(dòng)軌跡的基礎(chǔ)上,畫出草圖,如答圖3所示.由圖形可以直觀求出封閉圖形的周長(zhǎng).
解答
解:(1)當(dāng)m=2,n=2時(shí),
如題圖1,線段BC與線段OA的距離(即線段BN的長(zhǎng))=2;
當(dāng)m=5,n=2時(shí),
B點(diǎn)坐標(biāo)為(5,2),線段BC與線段OA的距離,即為線段AB的長(zhǎng),
如答圖1,過點(diǎn)B作BN⊥x軸于點(diǎn)N,則AN=1,BN=2,
在Rt△ABN中,由勾股定理得:AB=$\sqrt{A{N}^{2}+B{N}^{2}}$=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$.
故答案為:2,$\sqrt{5}$;![]()
(2)如答圖2所示,當(dāng)點(diǎn)B落在⊙A上時(shí),m的取值范圍為2≤m≤6:
當(dāng)4≤m≤6,顯然線段BC與線段OA的距離等于⊙A半徑,即d=2;
當(dāng)2≤m<4時(shí),作BN⊥x軸于點(diǎn)N,線段BC與線段OA的距離等于BN長(zhǎng),
ON=m,AN=OA-ON=4-m,在Rt△ABN中,由勾股定理得:
∴d=$\sqrt{{2}^{2}-(4-m)^{2}}$=$\sqrt{-{m}^{2}+8m-12}$.![]()
(3)依題意畫出圖形,點(diǎn)M的運(yùn)動(dòng)軌跡如答圖3中粗體實(shí)線所示:
由圖可見,封閉圖形由上下兩段長(zhǎng)度為8的線段,以及左右兩側(cè)半徑為2的半圓所組成,
其周長(zhǎng)為:2×8+2×π×2=16+4π,
∴點(diǎn)M隨線段BC運(yùn)動(dòng)所圍成的封閉圖形的周長(zhǎng)為:16+4π.
點(diǎn)評(píng) 本題考查了圓的相關(guān)性質(zhì)、點(diǎn)的坐標(biāo)、勾股定理、解方程等重要知識(shí)點(diǎn),難度較大.本題涉及動(dòng)線與動(dòng)點(diǎn),運(yùn)動(dòng)過程比較復(fù)雜,準(zhǔn)確理解運(yùn)動(dòng)過程是解決本題的關(guān)鍵.第(3)問中,關(guān)鍵是畫出點(diǎn)M運(yùn)動(dòng)軌跡的圖形,結(jié)合圖形求解一目了然;
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 5個(gè) |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com