分析 (1)由EF⊥AB可得出∠BOF=90°,根據(jù)“平行于同一條直線的兩直線互相平行”可得出FH∥CD,由“兩直線平行,同旁內(nèi)角互補”可得出∠GFH=49°,進而即可求出∠EFG的度數(shù);
(2)由EF⊥AB可得出∠BOF=90°,由“兩直線平行,內(nèi)錯角相等”可得出∠GMF=∠BOF=90°,利用鄰補角互補可求出∠FGM=49°,再根據(jù)三角形內(nèi)角和定理可求出∠MFG=41°,結合鄰補角互補可求出∠EFG的度數(shù);
(3)由EF⊥AB可得出∠KOF=90°,由“兩直線平行,同旁內(nèi)角互補”可得出∠FKO=49°,利用三角形內(nèi)角和定理可得出∠OFK=41°,再利用鄰補角互補可求出∠EFG的度數(shù).
解答 解(一):利用思路(1)過點F 作FH∥AB,如圖1所示.![]()
∵EF⊥AB,
∴∠BOF=90°.
∵FH∥AB,AB∥CD,
∴FH∥CD.
∵∠FGC+∠GFH=180°,∠FGC=131°,
∴∠GFH=49°,
∴∠GFO=∠GFH+∠HFO=49°+90°=139°.
解(二):利用思路(2)延長EF交CD于M,如圖2所示.![]()
∵EF⊥AB,
∴∠BOF=90°.
∵AB∥CD,
∴∠GMF=∠BOF=90°.
∵∠FGC=131°,
∴∠FGM=49°.
∵∠FGM+∠GMF+∠MFG=180°,
∴49°+90°+∠MFG=180°,
∴∠MFG=41°,
∴∠GFO=180°-∠MFG=139°.
解(三):利用思路(3)延長GF交AB于K,如圖3所示.![]()
∵EF⊥AB,
∴∠KOF=90°.
∵CD∥AB,
∴∠FKO+∠FGC=180°.
∵∠FGC=131°,
∴∠FKO=49°.
∵∠FKO+∠KOF+∠OFK=180°,
∴49°+90°+∠OFK=180°,
∴∠OFK=41°,
∴∠GFO=180°-∠OFK=139°.
點評 本題考查了平行線的性質(zhì)、垂線以及三角形內(nèi)角和定理,解題的關鍵是:(1)利用“兩直線平行,同旁內(nèi)角互補”得出∠GFH的度數(shù);(2)利用三角形內(nèi)角和定理求出∠MFG的度數(shù);(3)利用三角形內(nèi)角和定理求出∠OFK的度數(shù).
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
| A型車 | B型車 | |
| 進貨價格(元/輛) | 1100 | 1400 |
| 銷售價格(元/輛) | 今年的銷售價格 | 2400 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com