分析 (1)根據(jù)已知條件易證得∠BAD=∠ACE,且根據(jù)全等三角形的判定可證明△ABD≌△CAE,根據(jù)各線段的關(guān)系即可得結(jié)論.
(2)BD=DE+CE.根據(jù)全等三角形的判定可證明△ABD≌△CAE,根據(jù)各線段的關(guān)系即可得結(jié)論.
(3)同上理,BD=DE+CE仍成立.
解答 解:證明如下:
(1)∵∠BAC=90°,∴∠BAD+∠CAE=90°,
∵CE⊥AE,∴∠ACE+∠CAE=90°,
∴∠ACE=∠BAD;
又∵BD⊥AE,CE⊥AE,
∴∠ADB=∠CEA=90°,
在△ABD和△CAE中,
$\left\{\begin{array}{l}{∠ADB=∠CEA}\\{∠ACE=∠BAD}\\{AB=AC}\end{array}\right.$,
∴△ABD≌△CAE(AAS),
∴BD=AE,AD=CE;
∵AE=DE+AD,
∴BD=DE+CE;
(2)DE=BD+CE.
∵∠BAC=90°,∴∠BAD+∠CAE=90°,
∵CE⊥AE,∴∠ACE+∠CAE=90°,
∴∠ACE=∠BAD;
又∵BD⊥AE,CE⊥AE
∴∠ADB=∠CEA=90°,
在△ABD和△CAE中,
$\left\{\begin{array}{l}{∠ADB=∠CEA}\\{∠ACE=∠BAD}\\{AB=AC}\end{array}\right.$,
∴△ABD≌△CAE(AAS),
∴BD=AE,AD=CE;
∵DE=AE+AD,
∴DE=BD+CE;
(3)結(jié)論是:當(dāng)B、C在AE兩側(cè)時(shí),BD=DE+CE;當(dāng)B、C在AE同側(cè)時(shí),BD=DE-CE,DE=BD+CE.
點(diǎn)評(píng) 本題考查了全等三角形的判定和性質(zhì),涉及到直角三角形的性質(zhì)、余角和補(bǔ)角的性質(zhì)等知識(shí)點(diǎn),熟練掌握全等三角形的判定方法是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x2•x4=x6 | B. | x2+x3=x5 | C. | (x2)3=x5 | D. | x10÷x2=x5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 逐漸增大 | B. | 始終等于16 | C. | 始終等于4 | D. | 不能確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com