分析 (1)設(shè)購(gòu)買A型公交車每輛需x萬(wàn)元,購(gòu)買B型公交車每輛需y萬(wàn)元,根據(jù)“A型公交車1輛,B型公交車2輛,共需400萬(wàn)元;A型公交車2輛,B型公交車1輛,共需350萬(wàn)元”列出方程組解決問(wèn)題;
(2)設(shè)購(gòu)買A型公交車a輛,則B型公交車(10-a)輛,由“購(gòu)買A型和B型公交車的總費(fèi)用不超過(guò)1200萬(wàn)元”和“10輛公交車在該線路的年均載客總和不少于680萬(wàn)人次”列出不等式組探討得出答案即可;
(3)分別求出各種購(gòu)車方案總費(fèi)用,再根據(jù)總費(fèi)用作出判斷.
解答 解:(1)設(shè)購(gòu)買A型公交車每輛需x萬(wàn)元,購(gòu)買B型公交車每輛需y萬(wàn)元,由題意得
$\left\{\begin{array}{l}{x+2y=400}\\{2x+y=350}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=100}\\{y=150}\end{array}\right.$.
答:購(gòu)買A型公交車每輛需100萬(wàn)元,購(gòu)買B型公交車每輛需150萬(wàn)元.
(2)設(shè)購(gòu)買A型公交車a輛,則B型公交車(10-a)輛,由題意得
$\left\{\begin{array}{l}{100a+150(10-a)≤1200}\\{60a+100(10-a)≥680}\end{array}\right.$,
解得:6≤a≤8,
所以a=6,7,8;
則(10-a)=4,3,2;
三種方案:①購(gòu)買A型公交車6輛,則B型公交車4輛;②購(gòu)買A型公交車7輛,則B型公交車3輛;③購(gòu)買A型公交車8輛,則B型公交車2輛;
(3)①購(gòu)買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬(wàn)元;
②購(gòu)買A型公交車7輛,則B型公交車3輛:100×7+150×3=1150萬(wàn)元;
③購(gòu)買A型公交車8輛,則B型公交車2輛:100×8+150×2=1100萬(wàn)元;
故購(gòu)買A型公交車8輛,則B型公交車2輛費(fèi)用最少,最少總費(fèi)用為1100萬(wàn)元.
點(diǎn)評(píng) 此題考查二元一次方程組和一元一次不等式組的應(yīng)用,注意理解題意,找出題目蘊(yùn)含的數(shù)量關(guān)系,列出方程組或不等式組解決問(wèn)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0.5 | B. | -0.5 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | AD=CE | B. | MF=$\frac{1}{2}$CF | C. | ∠BEC=∠CDA | D. | AM=CM |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3個(gè) | B. | 4個(gè) | C. | 5個(gè) | D. | 2個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com