分析 (1)延長GP交DC于點E,利用△PED≌△PGF,得出PE=PG,DE=FG,得到CE=CG,CP是EG的中垂線,在Rt△CPG中,∠PCG=60°,所以PG=$\sqrt{3}$PC.
(2)延長GP交DA于點E,連接EC,GC,先證明△DPE≌△FPG,再證得△CDE≌△CBG,利用在Rt△CPG中,∠PCG=60°,所以PG=$\sqrt{3}$PC.
(3)延長GP到H,使PH=PG,連接CH、DH,作FE∥DC,先證△GFP≌△HDP,再證得△HDC≌△GBC,在Rt△CPG中,∠PCG=60°,所以PG=$\sqrt{3}$PC.
解答 (1)解:如圖1:![]()
延長GP交DC于點E,
利用△PED≌△PGF,得出PE=PG,DE=FG,
∵△BGF是等邊三角形,
∴FG=BG,
又∵四邊形ABCD是菱形,
∴CD=CB,
∴CE=CG,
∴CP是EG的中垂線,在Rt△CPG中,∠PCG=60°,
∵AB=10,BF=4;
∴CG=6
∴PG=3$\sqrt{3}$
(2)如圖2,![]()
證明:延長GP交DA于點E,連接EC,GC,
∵∠ABC=60°,△BGF正三角形
∴GF∥BC∥AD,
∴∠EDP=∠GFP,
在△DPE和△FPG中
$\left\{\begin{array}{l}{∠EDP=∠GFP}\\{DP=FP}\\{∠DPE=∠FPG}\end{array}\right.$
∴△DPE≌△FPG(ASA)
∴PE=PG,DE=FG=BG,
∵∠CDE=∠CBG=60°,CD=CB,
在△CDE和△CBG中,
$\left\{\begin{array}{l}{CD=CB}\\{∠CDE=∠CBE=60°}\\{DE=BG}\end{array}\right.$
∴△CDE≌△CBG(SAS)
∴CE=CG,∠DCE=∠BCG,
∴∠ECG=∠DCB=120°,
∵PE=PG,
∴CP⊥PG,∠PCG=$\frac{1}{2}$∠ECG=60°
∴PG=$\sqrt{3}$PC.
(3)猜想:PG=$\sqrt{3}$PC.
證明:如圖3,![]()
延長GP到H,使PH=PG,連接CH,CG,DH,作FE∥DC
∵P是線段DF的中點,
∴FP=DP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GF=HD,∠GFP=∠HDP,
∵∠GFP+∠PFE=120°,∠PFE=∠PDC,
∴∠CDH=∠HDP+∠PDC=120°,
∵四邊形ABCD是菱形,
∴CD=CB,∠ADC=∠ABC=60°,點A、B、G又在一條直線上,
∴∠GBC=120°,
∵△BFG是等邊三角形,
∴GF=GB,
∴HD=GB,
∴△HDC≌△GBC,
∴CH=CG,∠DCH=∠BCG,
∴∠DCH+∠HCB=∠BCG+∠HCB=120°,即∠HCG=120°
∵CH=CG,PH=PG,
∴PG⊥PC,∠GCP=∠HCP=60°,
∴PG=$\sqrt{3}$PC.
點評 本題主要考查了菱形的性質(zhì),以及全等三角形的判定等知識點,根據(jù)已知和所求的條件正確的構(gòu)建出相關(guān)的全等三角形是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com