| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
分析 過點(diǎn)E作EM⊥AC的延長線于點(diǎn)M,連接BE、EC,利用角平分線的性質(zhì)、垂直平分線的性質(zhì)得到EM=EN,EB=EC,證明Rt△BME≌Rt△CNE(HL),得到BM=CN,證明Rt△AME≌Rt△ANE(HL),得到AM=AN,由AM=AB-BM=AB-CN=AB-(AN-AC)=AB-AN+AC=AB-AM+AC,即AM=9-AM+5,即可解答.
解答 解:如圖,過點(diǎn)E作EM⊥AC的延長線于點(diǎn)M,連接BE、EC,![]()
∵BD=DC,DE⊥BC
∵BE=EC.
∵AE平分∠BAC,EM⊥AB,EN⊥AC,
∴EM=EN,∠EMB=∠ENC=90°.
在Rt△BME和Rt△CNE中,
$\left\{\begin{array}{l}{BE=EC}\\{EM=EN}\end{array}\right.$,
∴Rt△BME≌Rt△CNE(HL)
∴BM=CN,
在RtAME和Rt△ANE中,
$\left\{\begin{array}{l}{EM=EN}\\{AE=AE}\end{array}\right.$,
∴Rt△AME≌Rt△ANE(HL)
∴AM=AN,
∴AM=AB-BM=AB-CN=AB-(AN-AC)=AB-AN+AC=AB-AM+AC,
即AM=9-AM+5
2AM=9+5
2AM=14
AM=7.
故選:C.
點(diǎn)評 本題考查了全等三角形的性質(zhì)與判定,解決本題的關(guān)鍵是證明Rt△BME≌Rt△CNE(HL),得到BM=CN,證明Rt△AME≌Rt△ANE(HL),得到AM=AN.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3x-2y+z=0 | B. | $\frac{x}{7}$=-1 | C. | $\frac{2}{1-x}$=3 | D. | x2-x=1 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com