分析 過(guò)點(diǎn)C作CE∥AD交AB于點(diǎn)E,得到矩形ADCE,那么AE=CD=4,CE=AD.先在直角△ACD中利用勾股定理求出AD,然后在直角△BCE中利用勾股定理求出BE,那么AB=AE+BE.
解答
解:過(guò)點(diǎn)C作CE∥AD交AB于點(diǎn)E,
∵AB⊥AD于點(diǎn)A,CD⊥AD于點(diǎn)D,
∴四邊形ADCE是矩形,
∴AE=CD=4,CE=AD.
在直角△ACD中,∵∠ADC=90°,
∴AD=$\sqrt{A{C}^{2}-C{D}^{2}}$=$\sqrt{{8}^{2}-{4}^{2}}$=4$\sqrt{3}$,
∴CE=AD=4$\sqrt{3}$.
在直角△BCE中,∵∠BEC=90°,
∴BE=$\sqrt{B{C}^{2}-C{E}^{2}}$=$\sqrt{1{0}^{2}-(4\sqrt{3})^{2}}$=2$\sqrt{13}$,
∴AB=AE+BE=4+2$\sqrt{13}$.
即電線桿AB的高度是(4+2$\sqrt{13}$)m.
點(diǎn)評(píng) 本題考查了勾股定理的應(yīng)用,準(zhǔn)確作出輔助線求出BE的長(zhǎng)是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (1,3) | B. | (-2.5,-4) | C. | (2.5,-4) | D. | (-1,1) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -1<x<3 | B. | -1<x≤3 | C. | -1≤x<3 | D. | -1≤x≤3 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com