分析 根據(jù)題意結(jié)合平行線的性質(zhì)與判定方法得出AD∥BC,進(jìn)而利用平行四邊形的判定方法得出四邊形ABCD是平行四邊形,再利用等腰三角形的判定與性質(zhì)得出AD=DC,即可得出答案.
解答 證明:∵AB∥CD,
∴∠B+∠BCD=180°,
∵∠B=∠D,
∴∠D+∠BCD=180°,
∴AD∥BC,![]()
∵AB∥CD,
∴四邊形ABCD是平行四邊形,
∵PE⊥AB,PF⊥AD,PE=PF,
∴∠BAC=∠DAC,
∵AB∥CD,
∴∠BAC=∠DCA,
∴∠DAC=∠DCA,
∴AD=DC,
∴四邊形ABCD是菱形.
點(diǎn)評(píng) 此題主要考查了平行線的性質(zhì)與判定方法以及菱形的判定,得出AD=DC是解題關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 10 | B. | $\sqrt{10}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 36 | B. | 25 | C. | 18 | D. | 9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 折線統(tǒng)計(jì)圖 | B. | 條形統(tǒng)計(jì)圖 | C. | 頻數(shù)分布統(tǒng)計(jì)圖 | D. | 扇形統(tǒng)計(jì)圖 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com