分析 (1)證明相似,思路很常規(guī),就是兩個(gè)角相等或邊長(zhǎng)成比例.因?yàn)轭}中由圓周角易知一對(duì)相等的角,那么另一對(duì)角相等就是我們需要努力的方向,因?yàn)樯婕皥A,傾向于找接近圓的角∠DPF,利用補(bǔ)角在圓內(nèi)作等量代換,等弧對(duì)等角等知識(shí)易得∠DPF=∠APC,則結(jié)論易證.
(2)求PD的長(zhǎng),且此線段在上問(wèn)已證相似的△PDF中,很明顯用相似得成比例,再將其他邊代入是應(yīng)有的思路.利用已知條件易得其他邊長(zhǎng),則PD可求.
(3)因?yàn)轭}目涉及∠AFD與也在第一問(wèn)所得相似的△PDF中,進(jìn)而考慮轉(zhuǎn)化,∠AFD=∠PCA,連接PB得∠AFD=∠PCA=∠PBG,過(guò)G點(diǎn)作AB的垂線,若此線過(guò)PB與AC的交點(diǎn)那么結(jié)論易求,因?yàn)楦鶕?jù)三角函數(shù)或三角形與三角形ABC相似可用AG表示∠PBG所對(duì)的這條高線.但是“此線是否過(guò)PB與AC的交點(diǎn)”?此時(shí)首先需要做的是多畫(huà)幾個(gè)動(dòng)點(diǎn)P,觀察我們的猜想.驗(yàn)證得我們的猜想應(yīng)是正確的,可是證明不能靠畫(huà)圖,如何求證此線過(guò)PB與AC的交點(diǎn)是我們解題的關(guān)鍵.常規(guī)作法不易得此結(jié)論,我們可以換另外的輔助線作法,先做垂線,得交點(diǎn)H,然后連接交點(diǎn)與B,再證明∠HBG=∠PCA=∠AFD.因?yàn)镃、D關(guān)于AB對(duì)稱(chēng),可以延長(zhǎng)CG考慮P點(diǎn)的對(duì)稱(chēng)點(diǎn).根據(jù)等弧對(duì)等角,可得∠HBG=∠PCA,進(jìn)而得解題思路.
解答 解:(1)∵四邊形APCB內(nèi)接于圓O,
∴∠FPC=∠B.
又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,
∴∠APD=∠FPC,∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD,
又∵∠PAC=∠PDC,
∴△PAC∽△PDF;
(2)如圖1,連接PO,則由$\widehat{AP}$=$\widehat{BP}$,有PO⊥AB,且∠PAB=45°,△APO、△AEF都為等腰直角三角形.
在Rt△ABC中,
∵tan∠CAB=$\frac{1}{2}$,
∴AC=2BC,
∴AB2=BC2+AC2=5BC2,
∵AB=5,
∴BC=$\sqrt{5}$,
∴AC=2$\sqrt{5}$,
∴CE=AC•sin∠BAC=AC•$\frac{BC}{AB}$=2$\sqrt{5}$•$\frac{\sqrt{5}}{5}$=2,
AE=AC•cos∠BAC=AC•$\frac{AC}{AB}$=2$\sqrt{5}$•$\frac{2\sqrt{5}}{5}$=4,
∵△AEF為等腰直角三角形,
∴EF=AE=4,
∴FD=FC+CD=(EF-CE)+2CE=EF+CE=4+2=6.
∵△APO為等腰直角三角形,AO=$\frac{1}{2}$•AB=$\frac{5}{2}$,
∴AP=$\frac{5\sqrt{2}}{2}$.
∵△PDF∽△PAC,
∴$\frac{PD}{FD}$=$\frac{PA}{CA}$,
∴$\frac{PD}{6}$=$\frac{\frac{5\sqrt{2}}{2}}{2\sqrt{5}}$,
∴PD=$\frac{3\sqrt{10}}{2}$.
(3)如圖2,過(guò)點(diǎn)G作GH⊥AB,交AC于H,連接HB,以HB為直徑作圓,連接CG并延長(zhǎng)交⊙O于Q,
∵HC⊥CB,GH⊥GB,
∴C、G都在以HB為直徑的圓上,![]()
∴∠HBG=∠ACQ,
∵C、D關(guān)于AB對(duì)稱(chēng),G在AB上,
∴Q、P關(guān)于AB對(duì)稱(chēng),
∴$\widehat{AP}$=$\widehat{AQ}$,
∴∠PCA=∠ACQ,
∴∠HBG=∠PCA.
∵△PAC∽△PDF,
∴∠PCA=∠PFD=∠AFD,
∴y=tan∠AFD=tan∠PCA=tan∠HBG=$\frac{HG}{BG}$.
∵HG=tan∠HAG•AG=tan∠BAC•AG=$\frac{BC}{AC}$•AG=$\frac{1}{2}$•AG,
∴y=$\frac{1}{2}$•$\frac{AG}{BG}$=$\frac{1}{2}$x.
點(diǎn)評(píng) 本題考查的是圓的綜合題,涉及到圓周角、相似三角形、三角函數(shù)等性質(zhì),前兩問(wèn)思路還算簡(jiǎn)單,但最后一問(wèn)需要熟練的解題技巧需要長(zhǎng)久的磨練總結(jié).總體來(lái)講本題偏難,學(xué)生練習(xí)時(shí)加強(qiáng)理解,重點(diǎn)理解分析過(guò)程,自己如何找到思路.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4個(gè) | B. | 3個(gè) | C. | 2個(gè) | D. | 1個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com