分析 (1)連接OA,由OP垂直于AB,利用垂徑定理得到D為AB的中點(diǎn),即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP與三角形BOP全等,由PA為圓的切線,得到OA垂直于AP,利用全等三角形的對(duì)應(yīng)角相等及垂直的定義得到OB垂直于BP,即PB為圓O的切線;
(2)連接BE,構(gòu)建直角△BEF.在該直角三角形中利用銳角三角函數(shù)的定義、勾股定理可設(shè)BE=x,BF=2x,進(jìn)而可得EF=$\sqrt{5}$x;然后由面積法求得BD=$\frac{2\sqrt{5}}{5}$x,所以根據(jù)垂徑定理求得AB的長(zhǎng)度,在Rt△ABC中,根據(jù)勾股定理易求BC的長(zhǎng);最后由余弦三角函數(shù)的定義求解.
解答 (1)證明:連接OA,
∵PA與圓O相切,![]()
∴PA⊥OA,即∠OAP=90°,
∵OP⊥AB,
∴D為AB中點(diǎn),即OP垂直平分AB,
∴PA=PB,
∵在△OAP和△OBP中,
$\left\{\begin{array}{l}{AP=BP}\\{OP=OP}\\{OA=OB}\end{array}\right.$,
∴△OAP≌△OBP(SSS),
∴∠OAP=∠OBP=90°,
∴BP⊥OB,
則直線PB為圓O的切線;
(2)解:連接BE,則∠FBE=90°.
∵tan∠F=$\frac{1}{2}$,
∴$\frac{BE}{BF}$=$\frac{1}{2}$,
∴可設(shè)BE=x,BF=2x,
則由勾股定理,得
EF=$\sqrt{B{F}^{2}+B{E}^{2}}$=$\sqrt{5}$x,
∵$\frac{1}{2}$BE•BF=$\frac{1}{2}$EF•BD,
∴BD=$\frac{2\sqrt{5}}{5}$x.
又∵AB⊥EF,
∴AB=2BD=$\frac{4\sqrt{5}}{5}$x,
∴Rt△ABC中,BC=$\sqrt{5}$x,
AC2+AB2=BC2,
∴122+( $\frac{4\sqrt{5}}{5}$x)2=( $\sqrt{5}$x)2,
解得:x=4 $\sqrt{5}$,
∴BC=4 $\sqrt{5}$×$\sqrt{5}$=20,
∴cos∠ACB=$\frac{AC}{BC}$=$\frac{12}{20}$=$\frac{3}{5}$.
點(diǎn)評(píng) 此題考查了切線的判定與性質(zhì),相似及全等三角形的判定與性質(zhì)以及銳角三角函數(shù)關(guān)系等知識(shí),熟練掌握切線的判定與性質(zhì)是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | k<$\frac{1}{2}$且k≠0 | B. | k≤$\frac{1}{2}$且k≠0 | C. | k≥-$\frac{1}{2}$且k≠0 | D. | k>-$\frac{1}{2}$且k≠0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 20° | B. | 35° | C. | 45° | D. | 70° |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com