欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.(1)如圖,EF∥AD,∠1=∠2,∠BAC=80°.將求∠AGD的過程填寫完整.
解:∵EF∥AD,∴∠2=∠3 (兩直線平行,同位角相等)
又∵∠1=∠2∴∠1=∠3 (等量代換  )
∴AB∥DG(內錯角相等,兩直線平行)
∴∠BAC+∠AGD=180°(兩直線平行,同旁內角互補 )
∵∠BAC=80°∴∠AGD=100°.
(2)已知:如圖AB⊥BC,BC⊥CD且∠1=∠2,試說明:BE∥CF.
解:∵AB⊥BC,BC⊥CD(已知)
∴∠ABC=∠BCD=90°(垂直的定義)
∵∠1=∠2(已知)
∴∠EBC=∠BCF(等式性質)
∴BE∥CF(內錯角相等,兩直線平行)

分析 (1)由平行的性質結合條件可證得∠1=∠3,可證明AB∥DG,再利用平行的性質和已知條件可求得∠AGD的度數(shù),據(jù)此填空即可;
(2)由垂直的定義結合已知可得到∠EBC=∠BCF,根據(jù)平行線的判定可證得BE∥CF,據(jù)此填空即可.

解答 (1)解:∵EF∥AD,
∴∠2=_∠3(兩直線平行,同位角相等),
又∵∠1=∠2,
∴∠1=∠3 (等量代換),
∴AB∥DG(內錯角相等,兩直線平行),
∴∠BAC+∠AGD=180°(兩直線平行,同旁內角互補),
∵∠BAC=80°,
∴∠AGD=_100°.
故答案為:兩直線平行,同位角相等;等量代換;內錯角相等,兩直線平行;兩直線平行,同旁內角互補;
(2)證明:
∵AB⊥BC,BC⊥CD(已知),
∴∠ABC=∠BCD=90°(垂直的定義),
∵∠1=∠2(已知),
∴∠EBC=∠BCF(等式性質),
∴BE∥CF(內錯角相等,兩直線平行),
故答案為:∠ABC;∠BCD;垂直的定義;∠EBC;∠BCF;內錯角相等,兩直線平行.

點評 本題主要考查平行線的判定和性質,掌握平行線的判定和性質是解題的關鍵,即①兩直線平行?同位角相等,②兩直線平行?內錯角相等,③兩直線平行?同旁內角互補,④a∥b,b∥c⇒a∥c.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

15.看圖填空:已知如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠1,
求證:AD平分∠BAC.
證明:∵AD⊥BC于D,EG⊥BC于G(  已知  )
∴∠ADC=90°,∠EGC=90°(垂直的定義)
∴∠ADC=∠EGC(等量代換)
∴AD∥EG(同位角相等,兩直線平行  )
∴∠1=∠2(兩直線平行,內錯角相等)
∠E=∠3(兩直線平行,同位角相等)
又∵∠E=∠1( 已知)
∴∠2=∠3(等量代換)
∴AD平分∠BAC(角平分線的定義).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

16.化簡:$\frac{\sqrt{2}}{\sqrt{3}}$=$\frac{\sqrt{6}}{3}$;$\sqrt{4\frac{4}{9}}$=$\frac{2\sqrt{10}}{3}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

13.計算:
(1)$\sqrt{45}+\sqrt{18}-\sqrt{8}+\sqrt{125}$
(2)$\sqrt{24}+\sqrt{12}-(\sqrt{6}-\sqrt{27})$
(3)$\sqrt{1\frac{2}{3}}÷\sqrt{2\frac{1}{3}}×\sqrt{1\frac{2}{5}}$
(4)3$\sqrt{8}×(\sqrt{54}-5\sqrt{2}-2\sqrt{6})$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

20.一超市用4800元購進一批名優(yōu)水果,由于品質好很快售完,該超市又用12000元購進第二批同一品牌水果,所購數(shù)量是第一批的兩倍,但價格比第一批高4元.
(1)第一水果進價每斤多少元?
(2)超市以每斤30元的家鴿銷售該批水果,當?shù)诙鄢?\frac{4}{5}$時,出現(xiàn)了滯銷,超市決定降價促銷,若要第二批水果的銷售利潤不低于4200元,剩余的水果的銷售價格至少定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

10.已知一個圓錐的底面半徑是3,母線長為5,則圓錐的側面展開圖的圓心角為216度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

17.估計$\sqrt{8}$在( 。
A.1~2之間B.2~3之間C.3~4之間D.4~5之間

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

14.如圖,拋物線y=ax2+bx+c的對稱軸是x=$\frac{1}{3}$,小亮通過觀察得出了下面四條信息:
①4ac-b2>0,②abc<0,③4a+2b+c>0,④2a+3b=0.你認為其中正確的有( 。
A.①②B.②④C.①③D.③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

15.將兩個含30°和45°的直角三角板如圖放置,則∠α的度數(shù)是( 。
A.10°B.15°C.20°D.25°

查看答案和解析>>

同步練習冊答案