| A. | 42 | B. | 32 | C. | 42或32 | D. | 42或37 |
分析 本題應(yīng)分兩種情況進(jìn)行討論:
(1)當(dāng)△ABC為銳角三角形時(shí),在Rt△ABD和Rt△ACD中,運(yùn)用勾股定理可將BD和CD的長(zhǎng)求出,兩者相加即為BC的長(zhǎng),從而可將△ABC的周長(zhǎng)求出;
(2)當(dāng)△ABC為鈍角三角形時(shí),在Rt△ABD和Rt△ACD中,運(yùn)用勾股定理可將BD和CD的長(zhǎng)求出,兩者相減即為BC的長(zhǎng),從而可將△ABC的周長(zhǎng)求出.
解答
解:此題應(yīng)分兩種情況說明:
(1)當(dāng)△ABC為銳角三角形時(shí),在Rt△ABD中,
BD=$\sqrt{A{B}^{2}-A{D}^{2}}$=9,
在Rt△ACD中,
CD=$\sqrt{A{C}^{2}-A{D}^{2}}$=5
∴BC=5+9=14
∴△ABC的周長(zhǎng)為:15+13+14=42;
(2)當(dāng)△ABC為鈍角三角形時(shí),
在Rt△ABD中,BD=9,
在Rt△ACD中,CD=5,
∴BC=9-5=4.
∴△ABC的周長(zhǎng)為:15+13+4=32
∴當(dāng)△ABC為銳角三角形時(shí),△ABC的周長(zhǎng)為42;當(dāng)△ABC為鈍角三角形時(shí),△ABC的周長(zhǎng)為32.
綜上所述,△ABC的周長(zhǎng)是42或32.
故選:C.
點(diǎn)評(píng) 此題考查了勾股定理及解直角三角形的知識(shí),在解本題時(shí)應(yīng)分兩種情況進(jìn)行討論,易錯(cuò)點(diǎn)在于漏解,同學(xué)們思考問題一定要全面,有一定難度.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ax2+bx+c=0 | B. | x2-3=x2+2x-1 | C. | x2=0 | D. | x2-2xy-5y2=0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2條 | B. | 3條 | C. | 5條 | D. | 6條 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3cm | B. | 4cm | C. | 5cm | D. | 6cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù) | B. | 零是整數(shù),但不是分?jǐn)?shù) | ||
| C. | 正整數(shù)、負(fù)整數(shù)統(tǒng)稱整數(shù) | D. | 零既不是正數(shù),也不是負(fù)數(shù) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{3}{x^2}+2x+1=0$ | B. | 0.1x2-0.5x+1.8=0 | ||
| C. | $\frac{1}{2}{x^2}=1-\frac{3}{5}x$ | D. | x2+x-1=(x+1)2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com