分析 根據(jù)三角形中位線定理,逐步推理出各小長(zhǎng)方形的面積,總結(jié)出規(guī)律,用規(guī)律解答即可.
解答 解:∵四邊形ABCD中,AC=a,BD=b,且AC丄BD,
∴S四邊形ABCD=ab÷2;
由三角形的中位線的性質(zhì)可以推知,每得到一次四邊形,它的面積變?yōu)樵瓉?lái)的一半,
四邊形AnBnCnDn的面積是 $\frac{ab}{{2}^{n+1}}$.
則四邊形A2011B2011C2011D2011面積=$\frac{ab}{{2}^{2012}}$.
故答案是:$\frac{ab}{{2}^{2012}}$.
點(diǎn)評(píng) 此題主要考查學(xué)生對(duì)菱形的性質(zhì)及三角形中位線定理的理解及運(yùn)用.此題難度適中,注意數(shù)形結(jié)合思想的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{50x+40(12-x)≥520}\\{15x+25(12-x)≥240}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{50x+40(12-x)>520}\\{15x+25(12-x)>240}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{50x+40(12-x)≤520}\\{15x+25(12-x)≤240}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{50x+40(12-x)<520}\\{15x+25(12-x)<240}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{x<4}\\{x≥-1}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x>4}\\{x≤1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x>4}\\{x>-1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x≤4}\\{x>-1}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 5個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com