分析 (1)根據(jù)正方形的性質(zhì)和全等三角形的判定方法可證明△ABG≌△DBC;
(2)由全等三角形的性質(zhì)可得:∠BAG=∠BDC,再由正方形的性質(zhì)證明∠P=∠E=90°,即PD⊥PG.
解答 證明:(1)∵四邊形ABDE和四邊形BCFG是正方形,
∴BG=BC,BA=BD,∠GBC=∠ABD=90°,
∴∠GBA=∠CBD,
在△ABG和△DBC中
$\left\{\begin{array}{l}{BG=BC}\\{∠GBA=∠CBD}\\{BA=BD}\end{array}\right.$,
∴△ABG≌△DBC;
(2)∵△ABG≌△DBC,
∴∠BAG=∠BDC,
∵∠BAC=90°,
∴∠PAC+∠BAG=90°,
∵∠PAC+∠BDC=90°,∠EDC+∠BDC=90°,
∴∠PAC=∠EDC,
∴∠ACP=∠DCE,
∴∠P=∠E=90°,
∴PD⊥PG.
點(diǎn)評(píng) 本題考查了正方形的性質(zhì),全等三角形的性質(zhì)和判定的應(yīng)用主以及垂直的判定方法,重點(diǎn)考查學(xué)生的推理能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | a>0,b>0 | B. | a>0,b<0,|a|>|b| | C. | a<0,b>0,|a|<|b| | D. | 無法確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com